2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic profiles and potential antioxidant mechanisms of hawk tea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hawk tea has received increasing attention for its unique flavor and potential health benefits, with antioxidant function being one of its significant bioactivities. However, the metabolic profiles, potential antioxidant components, and action mechanisms of different types of hawk tea are still unclear. In this study, the chemical components of five hawk teas were determined using untargeted metabolomics. Then, the potential antioxidant metabolites and their possible action mechanisms were revealed by integrating network pharmacology and molecular docking. The results showed that the metabolic profiles of various hawk teas differed significantly, but the content of flavonoids was the highest in each group. Network pharmacology analyses suggested that 11 potential antioxidant metabolites—four of which were the same metabolites with high levels in the five types, and seven were differential metabolites—could be involved in several metabolic pathways in vivo. These pathways included the MAPK and PI3K/AKT signaling pathways, which may be closely related to antioxidant activity. Finally, molecular docking revealed potential antioxidant metabolites bound to 25 core antioxidant targets through hydrogen bonding and hydrophobic interactions. Among them, artemisinin, astragalin, isoquercetrin, isoquercitrin, kaempferol-3-glucuronide, and UDP-L-rhamnose exhibited low binding energies to core antioxidant targets such as AKT1, RELA, and MTOR, forming stable conformation. These insights lay the basis for further elucidating the antioxidant mechanism of hawk tea.

          Supplementary Information

          The online version contains supplementary material available at 10.1038/s41598-025-88160-8.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          KEGG: kyoto encyclopedia of genes and genomes.

          M Kanehisa (2000)
          KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            KEGG for taxonomy-based analysis of pathways and genomes

            KEGG ( https://www.kegg.jp ) is a manually curated database resource integrating various biological objects categorized into systems, genomic, chemical and health information. Each object (database entry) is identified by the KEGG identifier (kid), which generally takes the form of a prefix followed by a five-digit number, and can be retrieved by appending /entry/kid in the URL. The KEGG pathway map viewer, the Brite hierarchy viewer and the newly released KEGG genome browser can be launched by appending /pathway/kid, /brite/kid and /genome/kid, respectively, in the URL. Together with an improved annotation procedure for KO (KEGG Orthology) assignment, an increasing number of eukaryotic genomes have been included in KEGG for better representation of organisms in the taxonomic tree. Multiple taxonomy files are generated for classification of KEGG organisms and viruses, and the Brite hierarchy viewer is used for taxonomy mapping, a variant of Brite mapping in the new KEGG Mapper suite. The taxonomy mapping enables analysis of, for example, how functional links of genes in the pathway and physical links of genes on the chromosome are conserved among organism groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Network pharmacology: the next paradigm in drug discovery.

              The dominant paradigm in drug discovery is the concept of designing maximally selective ligands to act on individual drug targets. However, many effective drugs act via modulation of multiple proteins rather than single targets. Advances in systems biology are revealing a phenotypic robustness and a network structure that strongly suggests that exquisitely selective compounds, compared with multitarget drugs, may exhibit lower than desired clinical efficacy. This new appreciation of the role of polypharmacology has significant implications for tackling the two major sources of attrition in drug development--efficacy and toxicity. Integrating network biology and polypharmacology holds the promise of expanding the current opportunity space for druggable targets. However, the rational design of polypharmacology faces considerable challenges in the need for new methods to validate target combinations and optimize multiple structure-activity relationships while maintaining drug-like properties. Advances in these areas are creating the foundation of the next paradigm in drug discovery: network pharmacology.
                Bookmark

                Author and article information

                Contributors
                ysr312004@126.com
                xiefeng@mtxy.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 January 2025
                28 January 2025
                2025
                : 15
                : 3600
                Affiliations
                [1 ]Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502 People’s Republic of China
                [2 ]Institute of Biology, Guizhou Academy of Sciences, ( https://ror.org/05ty2n298) Guiyang, 50009 Guizhou People’s Republic of China
                Article
                88160
                10.1038/s41598-025-88160-8
                11775316
                39875806
                325cfa8f-0c26-413e-915c-d0e42a718fc6
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 7 November 2024
                : 24 January 2025
                Funding
                Funded by: Research Foundation for Scientific Scholars of Moutai Institute
                Award ID: mygccrc[2022]089
                Award ID: mygccrc[2024]006
                Award Recipient :
                Funded by: Natural Science Foundation of Guizhou Province
                Award ID: ZK[2023]451
                Award Recipient :
                Funded by: Special Funds for Local Scientific and Technological Development Guided by the Central Government
                Award ID: [2019]4006
                Funded by: Engineering Research Center supported by Guizhou Provincial Education Department
                Award ID: KY[2020]022
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2025

                Uncategorized
                hawk tea,untargeted metabolomics,antioxidant activity,network pharmacology,molecular docking,biosynthesis,metabolomics,target identification,target validation

                Comments

                Comment on this article