14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ubiquitination, the reversible protein conjugation with ubiquitin (Ub), is a post-translational modification that enables rapid and specific cellular responses to stimuli without requirement of de novo protein synthesis. Although ubiquitination also displays non-proteolytic functions, it often acts as a signal for selective protein degradation through the ubiquitin-proteasome system (UPS). In plants, it has become increasingly apparent that the UPS is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. In the nucleus, protein regulation via the UPS orchestrates gene expression, genome maintenance, and signal transduction. Here, we focus on E3 Ub-ligase proteins as major components of the ubiquitination cascade that confer specificity of substrate recognition. We provide an overview on how they contribute to nuclear proteome plasticity during plant responses to environmental stress signals.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          The ubiquitin-26S proteasome system at the nexus of plant biology.

          Plants, like other eukaryotes, rely on proteolysis to control the abundance of key regulatory proteins and enzymes. Strikingly, genome-wide studies have revealed that the ubiquitin-26S proteasome system (UPS) in particular is an exceedingly large and complex route for protein removal, occupying nearly 6% of the Arabidopsis thaliana proteome. But why is the UPS so pervasive in plants? Data accumulated over the past few years now show that it targets numerous intracellular regulators that have central roles in hormone signalling, the regulation of chromatin structure and transcription, tailoring morphogenesis, responses to environmental challenges, self recognition and battling pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis.

            In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and positional cloning of one of them, JASMONATE-INSENSITIVE1 (JAI1/JIN1). JIN1 encodes AtMYC2, a nuclear-localized basic helix-loop-helix-leucine zipper transcription factor, whose expression is rapidly upregulated by JA, in a CORONATINE INSENSITIVE1-dependent manner. Gain-of-function experiments confirmed the relevance of AtMYC2 in the activation of JA signaling. AtMYC2 differentially regulates the expression of two groups of JA-induced genes. The first group includes genes involved in defense responses against pathogens and is repressed by AtMYC2. Consistently, jin1 mutants show increased resistance to necrotrophic pathogens. The second group, integrated by genes involved in JA-mediated systemic responses to wounding, is activated by AtMYC2. Conversely, Ethylene-Response-Factor1 (ERF1) positively regulates the expression of the first group of genes and represses the second. These results highlight the existence of two branches in the JA signaling pathway, antagonistically regulated by AtMYC2 and ERF1, that are coincident with the alternative responses activated by JA and ET to two different sets of stresses, namely pathogen attack and wounding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression.

              Transcription factors DREB1A/CBF3 and DREB2A specifically interact with cis-acting dehydration-responsive element/C-repeat (DRE/CRT) involved in cold and drought stress-responsive gene expression in Arabidopsis thaliana. Intact DREB2A expression does not activate downstream genes under normal growth conditions, suggesting that DREB2A requires posttranslational modification for activation, but the activation mechanism has not been clarified. DREB2A domain analysis using Arabidopsis protoplasts identified a transcriptional activation domain between residues 254 and 335, and deletion of a region between residues 136 and 165 transforms DREB2A to a constitutive active form. Overexpression of constitutive active DREB2A resulted in significant drought stress tolerance but only slight freezing tolerance in transgenic Arabidopsis plants. Microarray and RNA gel blot analyses revealed that DREB2A regulates expression of many water stress-inducible genes. However, some genes downstream of DREB2A are not downstream of DREB1A, which also recognizes DRE/CRT but functions in cold stress-responsive gene expression. Synthetic green fluorescent protein gave a strong signal in the nucleus under unstressed control conditions when fused to constitutive active DREB2A but only a weak signal when fused to full-length DREB2A. The region between DREB2A residues 136 and 165 plays a role in the stability of this protein in the nucleus, which is important for protein activation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                08 February 2018
                2018
                : 9
                : 139
                Affiliations
                [1]LIPM, Université de Toulouse, INRA, CNRS , Castanet-Tolosan, France
                Author notes

                Edited by: Christian Mazars, UMR5546 Laboratoire de Recherche en Sciences Vegetales (LRSV), France

                Reviewed by: Lirong Zeng, University of Nebraska System, United States; Ute Hoecker, University of Cologne, Germany

                *Correspondence: Irene Serrano, ireserra@ 123456gmail.com Susana Rivas, susana.rivas@ 123456inra.fr

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.00139
                5809434
                29472944
                325e9318-f147-476e-b181-8149ee9ac8c3
                Copyright © 2018 Serrano, Campos and Rivas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 November 2017
                : 24 January 2018
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 76, Pages: 7, Words: 0
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                e3 ubiquitin-ligase,plant cell nucleus,post-translational modification,26s proteasome,transcription factor

                Comments

                Comment on this article