19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery of Clinically Approved Agents That Promote Suppression of Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial.

          Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥ 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥ 40% and ≤ 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin. PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administration's Office of Orphan Products Development, and the National Institutes of Health. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations.

            Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene containing a premature termination signal cause a deficiency or absence of functional chloride-channel activity. Aminoglycoside antibiotics can suppress premature termination codons, thus permitting translation to continue to the normal end of the transcript. We assessed whether topical administration of gentamicin to the nasal epithelium of patients with cystic fibrosis could result in the expression of functional CFTR channels. In a double-blind, placebo-controlled, crossover trial, patients with stop mutations in CFTR or patients homozygous for the DeltaF508 mutation received two drops containing gentamicin (0.3 percent, or 3 mg per milliliter) or placebo in each nostril three times daily for two consecutive periods of 14 days. Nasal potential difference was measured at base line and after each treatment period. Nasal epithelial cells were obtained before and after gentamicin treatment from patients carrying stop mutations, and the C-terminal of surface CFTR was stained. Gentamicin treatment caused a significant reduction in basal potential difference in the 19 patients carrying stop mutations (from -45+/-8 to -34+/-11 mV, P=0.005) and a significant response to chloride-free isoproterenol solution (from 0+/-3.6 to -5+/-2.7 mV, P<0.001). This effect of gentamicin on nasal potential difference occurred both in patients who were homozygous for stop mutations and in those who were heterozygous, but not in patients who were homozygous for DeltaF508. After gentamicin treatment, a significant increase in peripheral and surface staining for CFTR was observed in the nasal epithelial cells of patients carrying stop mutations. In patients with cystic fibrosis who have premature stop codons, gentamicin can cause translational "read through," resulting in the expression of full-length CFTR protein at the apical cell membrane, and thus can correct the typical electrophysiological abnormalities caused by CFTR dysfunction. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rescue of nonsense mutations by amlexanox in human cells

              Background Nonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough. Methods Using a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs. Results We demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional. Conclusions As a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.
                Bookmark

                Author and article information

                Journal
                American Journal of Respiratory and Critical Care Medicine
                Am J Respir Crit Care Med
                American Thoracic Society
                1073-449X
                1535-4970
                November 2016
                November 2016
                : 194
                : 9
                : 1092-1103
                Article
                10.1164/rccm.201601-0154OC
                5114449
                27104944
                3269508d-cc50-43db-a2b9-09ac4a132d43
                © 2016
                History

                Comments

                Comment on this article