65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C-Reactive Protein in Healthy Subjects: Associations With Obesity, Insulin Resistance, and Endothelial Dysfunction : A Potential Role for Cytokines Originating From Adipose Tissue?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          C-reactive protein, a hepatic acute phase protein largely regulated by circulating levels of interleukin-6, predicts coronary heart disease incidence in healthy subjects. We have shown that subcutaneous adipose tissue secretes interleukin-6 in vivo. In this study we have sought associations of levels of C-reactive protein and interleukin-6 with measures of obesity and of chronic infection as their putative determinants. We have also related levels of C-reactive protein and interleukin-6 to markers of the insulin resistance syndrome and of endothelial dysfunction. We performed a cross-sectional study in 107 nondiabetic subjects: (1) Levels of C-reactive protein, and concentrations of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, were related to all measures of obesity, but titers of antibodies to Helicobacter pylori were only weakly and those of Chlamydia pneumoniae and cytomegalovirus were not significantly correlated with levels of these molecules. Levels of C-reactive protein were significantly related to those of interleukin-6 (r=0.37, P<0.0005) and tumor necrosis factor-alpha (r=0.46, P<0.0001). (2) Concentrations of C-reactive protein were related to insulin resistance as calculated from the homoeostasis model assessment model, blood pressure, HDL, and triglyceride, and to markers of endothelial dysfunction (plasma levels of von Willebrand factor, tissue plasminogen activator, and cellular fibronectin). A mean standard deviation score of levels of acute phase markers correlated closely with a similar score of insulin resistance syndrome variables (r=0.59, P<0.00005), this relationship being weakened only marginally by removing measures of obesity from the insulin resistance score (r=0.53, P<0.00005). These data suggest that adipose tissue is an important determinant of a low level, chronic inflammatory state as reflected by levels of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein, and that infection with H pylori, C pneumoniae, and cytomegalovirus is not. Moreover, our data support the concept that such a low-level, chronic inflammatory state may induce insulin resistance and endothelial dysfunction and thus link the latter phenomena with obesity and cardiovascular disease.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment.

          IL-6-/- mice showed impaired leukocyte accumulation in subcutaneous air pouches. Defective leukocyte accumulation was not due to a reduced migratory capacity of IL-6-/- leukocytes and was associated with a reduced in situ production of chemokines. These observations led to a reexamination of the interaction of IL-6 with endothelial cells (EC). EC express only the gp130 signal transducing chain and not the subunit-specific IL-6R and are therefore unresponsive to IL-6. However, EC are responsive to a combination of IL-6 and soluble IL-6R as measured by the activation of STAT3, chemokine expression, and augmentation of ICAM-1. Activation by IL-6-IL-6R complexes was inhibited by an IL-6 receptor antagonist and potentiated by a superagonist. Hence, in vivo and in vitro evidence supports the concept that the IL-6 system plays an unexpected positive role in local inflammatory reactions by amplifying leukocyte recruitment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha.

            Insulin resistance is an important metabolic abnormality often associated with infections, cancer, obesity, and especially non-insulin-dependent diabetes mellitus (NIDDM). We have previously demonstrated that tumor necrosis factor-alpha produced by adipose tissue is a key mediator of insulin resistance in animal models of obesity-diabetes. However, the mechanism by which TNF-alpha interferes with insulin action is not known. Since a defective insulin receptor (IR) tyrosine kinase activity has been observed in obesity and NIDDM, we measured the IR tyrosine kinase activity in the Zucker (fa/fa) rat model of obesity and insulin resistance after neutralizing TNF-alpha with a soluble TNF receptor (TNFR)-lgG fusion protein. This neutralization resulted in a marked increase in insulin-stimulated autophosphorylation of the IR, as well as phosphorylation of insulin receptor substrate 1 (IRS-1) in muscle and fat tissues of the fa/fa rats, restoring them to near control (lean) levels. In contrast, no significant changes were observed in insulin-stimulated tyrosine phosphorylations of IR and IRS-1 in liver. The physiological significance of the improvements in IR signaling was indicated by a concurrent reduction in plasma glucose, insulin, and free fatty acid levels. These results demonstrate that TNF-alpha participates in obesity-related systemic insulin resistance by inhibiting the IR tyrosine kinase in the two tissues mainly responsible for insulin-stimulated glucose uptake: muscle and fat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Procedures for comparing samples with multiple endpoints.

              Five procedures are considered for the comparison of two or more multivariate samples. These procedures include a newly proposed nonparametric rank-sum test and a generalized least squares test. Also considered are the following tests: ordinary least squares, Hotelling's T2, and a Bonferroni per-experiment error-rate approach. Applications are envisaged in which each variable represents a qualitatively different measure of response to treatment. The null hypothesis of no treatment difference is tested with power directed towards alternatives in which at least one treatment is uniformly better than the others. In all simulations the nonparametric procedure provided relatively good power and accurate control over the size of the test, and is recommended for general use. Alternatively, the generalized least squares procedure may also be useful with normally distributed data in moderate or large samples. A convenient expression for this procedure is obtained and its asymptotic relative efficiency with respect to the ordinary least squares test is evaluated.
                Bookmark

                Author and article information

                Journal
                Arteriosclerosis, Thrombosis, and Vascular Biology
                Arterioscler Thromb Vasc Biol
                Ovid Technologies (Wolters Kluwer Health)
                1079-5642
                1524-4636
                April 1999
                April 1999
                : 19
                : 4
                : 972-978
                Affiliations
                [1 ]From the Centre for Diabetes and Cardiovascular Risk, Department of Medicine, University College London Medical School, G Block, Archway Wing, Whittington Hospital, Archway Road, London N19 3UA, UK (J.S.Y., S.W.C.); the Department of Medicine, Academic Hospital Vrije Universiteit and the Institute for Cardiovascular Research Vrije Universiteit, 1081 HV Amsterdam, Netherlands (C.D.A.S.); and the Gaubius Laboratory, TNO-PG, 2301 CE Leiden, Netherlands (J.J.E.).
                Article
                10.1161/01.ATV.19.4.972
                10195925
                326d2eab-5dbf-460c-ba49-34bdf1ed0515
                © 1999
                History

                Comments

                Comment on this article