9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microplastics in eviscerated flesh and excised organs of dried fish

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a paucity of information about the occurrence of microplastics (MPs) in edible fish tissues. Here, we investigated the potential presence of MPs in the excised organs (viscera and gills) and eviscerated flesh (whole fish excluding the viscera and gills) of four commonly consumed dried fish species (n = 30 per species). The MP chemical composition was then determined using micro-Raman spectroscopy and elemental analysis with energy-dispersive X-ray spectroscopy (EDX). Out of 61 isolated particles, 59.0% were plastic polymers, 21.3% were pigment particles, 6.55% were non-plastic items (i.e. cellulose or actinolite), while 13.1% remained unidentified. The level of heavy metals on MPs or pigment particles were below the detection limit. Surprisingly, in two species, the eviscerated flesh contained higher MP loads than the excised organs, which highlights that evisceration does not necessarily eliminate the risk of MP intake by consumers. Future studies are encouraged to quantify anthropogenic particle loads in edible fish tissues.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: found
          • Article: not found

          Marine pollution. Plastic waste inputs from land into the ocean.

          Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microplastics in bivalves cultured for human consumption.

            Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L).

              Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
                Bookmark

                Author and article information

                Contributors
                alikaramiv@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 July 2017
                14 July 2017
                2017
                : 7
                Affiliations
                [1 ]ISNI 0000 0001 2231 800X, GRID grid.11142.37, Laboratory of Aquatic Toxicology, Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, , Universiti Putra Malaysia, ; 43400 Selangor, Malaysia
                [2 ]GRID grid.440425.3, Discipline of Chemical Engineering, School of Engineering, , Monash University Malaysia, ; 47500 Selangor, Malaysia
                [3 ]GRID grid.424724.3, , HORIBA Jobin Yvon S.A.S., ; 231, rue de Lille, 59650 Villeneuve d’Ascq, France
                Article
                5828
                10.1038/s41598-017-05828-6
                5511207
                28710445
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article