23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac).

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibitors of the serotonin transporter (SERT) are widely used antidepressant agents, but the structural mechanism for inhibitory activity and selectivity over the closely related norepinephrine transporter (NET) is not well understood. Here we use a combination of chemical, biological, and computational methods to decipher the molecular basis for high-affinity recognition in SERT and selectivity over NET for the prototypical antidepressant drug fluoxetine (Prozac; Eli Lilly, Indianapolis, IN). We show that fluoxetine binds within the central substrate site of human SERT, in agreement with recent X-ray crystal structures of LeuBAT, an engineered monoamine-like version of the bacterial amino acid transporter LeuT. However, the binding orientation of fluoxetine is reversed in our experimentally supported model compared with the LeuBAT structures, emphasizing the need for careful experimental verification when extrapolating findings from crystal structures of bacterial transporters to human relatives. We find that the selectivity of fluoxetine and nisoxetine, a NET selective structural congener of fluoxetine, is controlled by residues in different regions of the transporters, indicating a complex mechanism for selective recognition of structurally similar compounds in SERT and NET. Our findings add important new information on the molecular basis for SERT/NET selectivity of antidepressants, and provide the first assessment of the potential of LeuBAT as a model system for antidepressant binding in human transporters, which is essential for future structure-based drug development of antidepressant drugs with fine-tuned transporter selectivity.

          Related collections

          Author and article information

          Journal
          Mol. Pharmacol.
          Molecular pharmacology
          1521-0111
          0026-895X
          May 2014
          : 85
          : 5
          Affiliations
          [1 ] Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (J.A., N.S.-H., L.G.Z., K.S., A.S.K.); and Center for Insoluble Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, Denmark (H.K., B.S.).
          Article
          mol.113.091249
          10.1124/mol.113.091249
          24516100
          327c3abf-c671-44e8-9ed7-80055fe0ffbd
          History

          Comments

          Comment on this article