3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Is It Me or My Hormones? Neuroendocrine Activation Profiles to Visual Food Stimuli Across the Menstrual Cycle

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homeostatic energy balance is controlled via the hypothalamus, whereas regions controlling reward and cognitive decision-making are critical for hedonic eating. Eating varies across the menstrual cycle peaking at the midluteal phase.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues.

          Food selection is primarily guided by the visual system. Multiple functional neuro-imaging studies have examined the brain responses to visual food stimuli. However, the results of these studies are heterogeneous and there still is uncertainty about the core brain regions involved in the neural processing of viewing food pictures. The aims of the present study were to determine the concurrence in the brain regions activated in response to viewing pictures of food and to assess the modulating effects of hunger state and the food's energy content. We performed three Activation Likelihood Estimation (ALE) meta-analyses on data from healthy normal weight subjects in which we examined: 1) the contrast between viewing food and nonfood pictures (17 studies, 189 foci), 2) the modulation by hunger state (five studies, 48 foci) and 3) the modulation by energy content (seven studies, 86 foci). The most concurrent brain regions activated in response to viewing food pictures, both in terms of ALE values and the number of contributing experiments, were the bilateral posterior fusiform gyrus, the left lateral orbitofrontal cortex (OFC) and the left middle insula. Hunger modulated the response to food pictures in the right amygdala and left lateral OFC, and energy content modulated the response in the hypothalamus/ventral striatum. Overall, the concurrence between studies was moderate: at best 41% of the experiments contributed to the clusters for the contrast between food and nonfood. Therefore, future research should further elucidate the separate effects of methodological and physiological factors on between-study variations. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emotional arousal and activation of the visual cortex: an fMRI analysis.

            Functional activity in the visual cortex was assessed using functional magnetic resonance imaging technology while participants viewed a series of pleasant, neutral, or unpleasant pictures. Coronal images at four different locations in the occipital cortex were acquired during each of eight 12-s picture presentation periods (on) and 12-s interpicture interval (off). The extent of functional activation was larger in the right than the left hemisphere and larger in the occipital than in the occipitoparietal regions during processing of all picture contents compared with the interpicture intervals. More importantly, functional activity was significantly greater in all sampled brain regions when processing emotional (pleasant or unpleasant) pictures than when processing neutral stimuli. In Experiment 2, a hypothesis that these differences were an artifact of differential eye movements was ruled out. Whereas both emotional and neutral pictures produced activity centered on the calcarine fissure (Area 17), only emotional pictures also produced sizable clusters bilaterally in the occipital gyrus, in the right fusiform gyrus, and in the right inferior and superior parietal lobules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progesterone receptors: form and function in brain.

              Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
                Bookmark

                Author and article information

                Journal
                The Journal of Clinical Endocrinology & Metabolism
                The Endocrine Society
                0021-972X
                1945-7197
                September 01 2017
                September 01 2017
                June 28 2017
                September 01 2017
                September 01 2017
                June 28 2017
                : 102
                : 9
                : 3406-3414
                Article
                10.1210/jc.2016-3921
                28911135
                32855c98-c671-4772-92bf-bab52aec3da0
                © 2017
                History

                Comments

                Comment on this article