2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amine derivatives of furocoumarin induce melanogenesis by activating Akt/GSK-3β/β-catenin signal pathway

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Melanogenesis, or the biosynthesis of melanin, plays a critical role in the pigmentation of skin, hair, and eyes. Reduced melanogenesis may lead to depigmentation conditions such as vitiligo. Psoralen, a furocoumarin derivative, is closely associated with melanogenesis, and its derivative 8-methoxypsoralen is used in psoralen and ultraviolet A therapy for pigmentation disorders. In a previous study, we synthesized a new series of amine derivatives of furocoumarin, of which 5-(morpholinomethyl)-3-phenyl-7 H-furo[3,2- g]chromen-7-one (encoded as D206008) showed a remarkable melanogenic effect in B16 murine cells.

          Methods

          In this study, we examined the effects of D206008 on the melanogenesis-related pathways in B16 cells. D206008 increased melanin production and tyrosinase (TYR) activity, as well as the mRNA and protein expression levels of the melanogenic enzymes TYR, TRP-1 and TRP-2, and the melanogenesis-related transcription factor microphthalmia-associated transcription factor (MITF) in a dose-dependent (0–100 µM) and time-dependent (0–48 hours) manner.

          Results

          Mechanistically, D206008 inhibited β-catenin degradation by enhancing the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which increased the accumulation of β-catenin in the cytoplasm. Nuclear translocation of β-catenin also increased in response to D206008 treatment.

          Conclusion

          Taken together, these data indicate that D206008 promotes melanin synthesis by stimulating the nuclear translocation of β-catenin, which activates MITF transcription and eventually melanogenesis.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          The glamour and gloom of glycogen synthase kinase-3.

          Glycogen synthase kinase-3 (GSK3) is now recognized as a key component of a surprisingly large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. These are used to control and direct the far-reaching influences of GSK3 on cellular structure, growth, motility and apoptosis. Dysregulation of GSK3 is linked to several prevalent pathological conditions, such as diabetes and/or insulin resistance, and Alzheimer's disease. Therefore, much effort is currently directed towards understanding the functions and control of GSK3, and identifying methods capable of diminishing the deleterious impact of GSK3 in pathological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stabilization of beta-catenin by genetic defects in melanoma cell lines.

            Signal transduction by beta-catenin involves its posttranslational stabilization and downstream coupling to the Lef and Tcf transcription factors. Abnormally high amounts of beta-catenin were detected in 7 of 26 human melanoma cell lines. Unusual messenger RNA splicing and missense mutations in the beta-catenin gene (CTNNB1) that result in stabilization of the protein were identified in six of the lines, and the adenomatous polyposis coli tumor suppressor protein (APC) was altered or missing in two others. In the APC-deficient cells, ectopic expression of wild-type APC eliminated the excess beta-catenin. Cells with stabilized beta-catenin contained a constitutive beta-catenin-Lef-1 complex. Thus, genetic defects that result in up-regulation of beta-catenin may play a role in melanoma progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway.

              The Wnt pathway controls numerous developmental processes via the beta-catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of beta-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic beta-catenin associates with APC and axin and is continuously phosphorylated by GSK-3beta, marking it for proteasomal degradation. Wnt signaling is considered to prevent GSK-3beta from phosphorylating beta-catenin, thus causing its stabilization. However, the Wnt mechanism of action has not been resolved. Here we study the regulation of beta-catenin phosphorylation and degradation by the Wnt pathway. Using mass spectrometry and phosphopeptide-specific antibodies, we show that a complex of axin and casein kinase I (CKI) induces beta-catenin phosphorylation at a single site: serine 45 (S45). Immunopurified axin and recombinant CKI phosphorylate beta-catenin in vitro at S45; CKI inhibition suppresses this phosphorylation in vivo. CKI phosphorylation creates a priming site for GSK-3beta and is both necessary and sufficient to initiate the beta-catenin phosphorylation-degradation cascade. Wnt3A signaling and Dvl overexpression suppress S45 phosphorylation, thereby precluding the initiation of the cascade. Thus, a single, CKI-dependent phosphorylation event serves as a molecular switch for the Wnt pathway.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2019
                12 February 2019
                : 13
                : 623-632
                Affiliations
                [1 ]Key Laboratory of Plant Resources and Chemistry in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China, haji@ 123456ms.xjb.ac.cn
                [2 ]University of Chinese Academy of Sciences, Beijing 100049, China
                Author notes
                Correspondence: Haji Akber Aisa, Xinjiang Laboratory of Plant Resource and Natural Products Chemistry, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, China, Tel +86 991 383 8277, Fax +86 991 383 8957, Email haji@ 123456ms.xjb.ac.cn
                Article
                dddt-13-623
                10.2147/DDDT.S180960
                6387609
                © 2019 Zang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article