26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          A low-viscosity epoxy resin embedding medium for electron microscopy.

          A R Spurr (1969)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluorescent probes for super-resolution imaging in living cells.

            In 1873, Ernst Abbe discovered that features closer than approximately 200 nm cannot be resolved by lens-based light microscopy. In recent years, however, several new far-field super-resolution imaging techniques have broken this diffraction limit, producing, for example, video-rate movies of synaptic vesicles in living neurons with 62 nm spatial resolution. Current research is focused on further improving spatial resolution in an effort to reach the goal of video-rate imaging of live cells with molecular (1-5 nm) resolution. Here, we describe the contributions of fluorescent probes to far-field super-resolution imaging, focusing on fluorescent proteins and organic small-molecule fluorophores. We describe the features of existing super-resolution fluorophores and highlight areas of importance for future research and development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAADP mobilizes calcium from acidic organelles through two-pore channels

              Ca2+ mobilization from intracellular stores represents an important cell signaling process 1 which is regulated, in mammalian cells, by inositol 1,4,5-trisphosphate (InsP3), cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP3 and cADPR release Ca2+ from sarco / endoplasmic reticulum (S/ER) stores through activation of InsP3 and ryanodine receptors (InsP3Rs and RyRs). By contrast, the nature of the intracellular stores targeted by NAADP and molecular identity of the NAADP receptors remain controversial 1,2, although evidence indicates that NAADP mobilizes Ca2+ from lysosome-related acidic compartments 3,4. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with TPC1 and TPC3 being expressed on endosomal and TPC2 on lysosomal membranes. Membranes enriched with TPC2 exhibit high affinity NAADP binding and TPC2 underpins NAADP-induced Ca2+ release from lysosome-related stores that is subsequently amplified by Ca2+-induced Ca2+ release via InsP3Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but only attenuated by depleting ER Ca2+ stores or blocking InsP3Rs. Thus, TPCs form NAADP receptors that release Ca2+ from acidic organelles, which can trigger additional Ca2+ signals via S/ER. TPCs therefore provide new insights into the regulation and organization of Ca2+ signals in animal cells and will advance our understanding of the physiological role of NAADP.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                17 January 2017
                2017
                : 7
                : 40620
                Affiliations
                [1 ]Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK; BHF Centre of Research Excellence, University of Oxford, UK
                [2 ]Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Sherrington Road, Oxford, OX1 3PT, UK; BHF Centre of Research Excellence, University of Oxford, UK
                [3 ]Computational Biology, Department of Computer Science, Wolfson Building, University of Oxford , Oxford, OX1 3QD, UK
                [4 ]National Heart and Lung Institute, Imperial College London , London, UK
                [5 ]Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, University Medical School , Freiburg, Germany
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                These authors jointly supervised this work.

                Article
                srep40620
                10.1038/srep40620
                5240626
                28094777
                3288af4e-23d0-4ca7-82b0-1b6fddc911f8
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 March 2016
                : 09 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article