10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of polyherbal antidiabetic formulation encapsulated in the phospholipids vesicle system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multifactorial metabolic diseases, for instance diabetes develop several complications like hyperlipidemia, hepatic toxicity, immunodeficiency etc., Hence, instead of mono-drug therapy the management of the disease requires the combination of herbs. Marketed herbal drugs comprise of irrational combinations, which makes their quality control more difficult. Phytoconstituents, despite having excellent bioactivity in vitro demonstrate less or no in vivo actions due to their poor lipid solubility, resulting in high therapeutic dose regimen; phospholipids encapsulation can overcome this problem. Hence, present study was designed to develop a phospholipids encapsulated polyherbal anti-diabetic formulation. In the present study, polyherbal formulation comprises of lyophilized hydro-alcoholic (50% v/v) extracts of Momordica charantia, Trigonella foenum-graecum and Withania somnifera 2:2:1, respectively, named HA, optimized based on oral glucose tolerance test model in normal Wistar rats. The optimized formulation (HA) entrapped in the phosphatidylcholine and cholesterol (8:2) vesicle system is named HA lipids (HAL). The vesicles were characterized for shape, morphology, entrapment efficiency, polar-dispersity index and release profile in the gastric pH. The antidiabetic potential of HA, marketed polyherbal formulation (D-fit) and HAL was compared in streptozotocin-induced diabetic rat model of 21 days study. The parameters evaluated were behavioral changes, body weight, serum glucose level, lipid profile and oxidative stress. The antidiabetic potential of HA (1000 mg/kg) was at par with the D-fit (1000 mg/kg). However, the potential was enhanced by phospholipids encapsulation; as HAL (500 mg/kg) has shown more significant ( P < 0.05) potential in comparison to HA (1000 mg/kg) and at par with metformin (500 mg/kg).

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A modified spectrophotometric assay of superoxide dismutase.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peroxisome proliferator-activated receptors in inflammation control.

              Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily. PPARalpha is highly expressed in liver, skeletal muscle, kidney, heart and the vascular wall. PPARgamma is predominantly detected in adipose tissue, intestine and macrophages. PPARs are activated by fatty-acid derivatives and pharmacological agents such as fibrates and glitazones which are specific for PPARalpha and PPARgamma respectively. PPARs regulate lipid and lipoprotein metabolism, glucose homeostasis, cell proliferation and differentiation, and apoptosis. PPARalpha controls intra- and extracellular lipid metabolisms whereas PPARgamma triggers adipocyte differentiation and promotes lipid storage. In addition, PPARs also modulate the inflammatory response. PPAR activators have been shown to exert anti-inflammatory activities in various cell types by inhibiting the expression of proinflammatory genes such as cytokines, metalloproteases and acute-phase proteins. PPARs negatively regulate the transcription of inflammatory response genes by antagonizing the AP-1, nuclear factor-kappaB (NF-kappaB), signal transducer and activator of transcription and nuclear factor of activated T-cells signalling pathways and by stimulating the catabolism of proinflammatory eicosanoids. These recent findings indicate a modulatory role for PPARs in inflammation with potential therapeutical applications in chronic inflammatory diseases.
                Bookmark

                Author and article information

                Journal
                J Adv Pharm Technol Res
                J Adv Pharm Technol Res
                JAPTR
                Journal of Advanced Pharmaceutical Technology & Research
                Medknow Publications & Media Pvt Ltd (India )
                2231-4040
                0976-2094
                Apr-Jun 2013
                : 4
                : 2
                : 108-117
                Affiliations
                [1]Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
                Author notes
                Address for correspondence: Dr. Ajudhia Nath Kalia, Department of Pharmacognosy, ISF College of Pharmacy, Moga - 142 001, Punjab, India Ankalia_47@ 123456rediffmail.com
                Article
                JAPTR-4-108
                10.4103/2231-4040.111527
                3696222
                23833751
                3297dd1e-9db0-4ae9-9073-d8b043ed08af
                Copyright: © Journal of Advanced Pharmaceutical Technology & Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                antihyperglycemic,antioxidant,metformin,streptozotocin
                Pharmacology & Pharmaceutical medicine
                antihyperglycemic, antioxidant, metformin, streptozotocin

                Comments

                Comment on this article