119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH)-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4) plays a role in inflammatory damage caused by brain disorders.

          Methods

          In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics.

          Results

          Compared to WT mice, TLR4 −/− mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4 −/−, MyD88 −/− and TRIF −/− mice showed attenuated inflammatory damage after ICH. TLR4 −/− mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4 −/− mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH.

          Conclusions

          Our findings suggest that heme potentiates microglial activation via TLR4, in turn inducing NF-κB activation via the MyD88/TRIF signaling pathway, and ultimately increasing cytokine expression and inflammatory injury in ICH. Targeting TLR4 signaling may be a promising therapeutic strategy for ICH.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway.

          Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of innate immune responses in the brain.

            Microglial cells are the main innate immune cells of the complex cellular structure of the brain. These cells respond quickly to pathogens and injury, accumulate in regions of degeneration and produce a wide variety of pro-inflammatory molecules. These observations have resulted in active debate regarding the exact role of microglial cells in the brain and whether they have beneficial or detrimental functions. Careful targeting of these cells could have therapeutic benefits for several types of trauma and disease specific to the central nervous system. This Review discusses the molecular details underlying the innate immune response in the brain during infection, injury and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TLRs and innate immunity.

              One of the most fundamental questions in immunology pertains to the recognition of non-self, which for the most part means microbes. How do we initially realize that we have been inoculated with microbes, and how is the immune response ignited? Genetic studies have made important inroads into this question during the past decade, and we now know that in mammals, a relatively small number of receptors operate to detect signature molecules that herald infection. One or more of these signature molecules are displayed by almost all microbes. These receptors and the signals they initiate have been studied in depth by random germline mutagenesis and positional cloning (forward genetics). Herein is a concise description of what has been learned about the Toll-like receptors, which play an essential part in the perception of microbes and shape the complex host responses that occur during infection.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2012
                6 March 2012
                : 9
                : 46
                Affiliations
                [1 ]Department of Neurology, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
                [2 ]Department of Rehabilitation Physical Therapy, Southwest Hospital, Third Military Medical University, Gao tan yan street, Shapingba District, Chongqing 400038, China
                [3 ]College of Biomedical Engineering, Chongqing University, Chongqing 400044, China
                [4 ]Department of Development and Regeneration Key Laboratory of Sichuan Province, Department of Histo-embryology and Neurobiology, Chengdu Medical College, Chengdu 610083, PR China
                Article
                1742-2094-9-46
                10.1186/1742-2094-9-46
                3344687
                22394415
                329844fe-8b81-4ab7-9c9a-610081969b53
                Copyright ©2012 Lin et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 July 2011
                : 6 March 2012
                Categories
                Research

                Neurosciences
                heme,trif,myd88,inflammation,intracerebral hemorrhage,toll-like receptor 4
                Neurosciences
                heme, trif, myd88, inflammation, intracerebral hemorrhage, toll-like receptor 4

                Comments

                Comment on this article