+1 Recommend
1 collections

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)


      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigallocatechin-3-Gallate Promotes the in vitro Maturation and Embryo Development Following IVF of Porcine Oocytes


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and exerts protective effects because of its strong antioxidant properties. As far as we know, there is still a lack of systematic research on the effects of EGCG on the in vitro maturation (IVM) and in vitro fertilization (IVF) of porcine oocytes. The present study aimed to determine the effects of EGCG on the IVM and IVF of porcine oocytes.


          Porcine oocytes were treated with different concentrations of EGCG (5, 10 and 20 µM), and the cumulus cell expansion, oocyte maturation rate, reactive oxygen species (ROS), glutathione (GSH) and malondialdehyde (MDA) levels, total antioxidant capacity were determined. The mRNA expression levels of oxidative stress- and apoptosis-associated genes were determined by quantitative real-time PCR. The cleavage rate and blastocyst rate of oocytes after 10 μM EGCG treatment during IVM and IVF were also evaluated.


          EGCG at 5, 10 and 20 μM significantly promoted cumulus cell expansion, and EGCG at 10 μM increased the oocyte maturation rate. EGCG (10 μM) treatment reduced the ROS and MDA levels, while increased the antioxidant capacity and GSH concentrations in the mature oocytes. The qRT-PCR results showed that EGCG treatment up-regulated the mRNA expression of catalase, glutathione peroxidase and superoxide dismutase in the mature oocytes. In addition, EGCG treatment also decreased the mRNA expression levels of Bax and caspase-3 and increased the Bcl-2 mRNA expression level in the mature oocytes. In addition, the cleavage rate and blastocyst rate of oocytes treated with 10 μM EGCG during IVM and IVF were significantly higher than those of the control group.


          Our results suggest that EGCG promotes the in vitro maturation and embryo development following IVF of porcine oocytes. The protective effects of EGCG on the oocytes may be associated with its antioxidant and anti-apoptosis properties.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antioxidant responses and cellular adjustments to oxidative stress

          Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.

            The consumption of green tea (Camellia sinensis) has been shown to have many physiological and pharmacological health benefits. In the past two decades several studies have reported that epigallocatechin-3-gallate (EGCG), the main constituent of green tea, has anti-infective properties. Antiviral activities of EGCG with different modes of action have been demonstrated on diverse families of viruses, such as Retroviridae, Orthomyxoviridae and Flaviviridae and include important human pathogens like human immunodeficiency virus, influenza A virus and the hepatitis C virus. Furthermore, the molecule interferes with the replication cycle of DNA viruses like hepatitis B virus, herpes simplex virus and adenovirus. Most of these studies demonstrated antiviral properties within physiological concentrations of EGCG in vitro. In contrast, the minimum inhibitory concentrations against bacteria were 10-100-fold higher. Nevertheless, the antibacterial effects of EGCG alone and in combination with different antibiotics have been intensively analysed against a number of bacteria including multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus or Stenotrophomonas maltophilia. Furthermore, the catechin EGCG has antifungal activity against human-pathogenic yeasts like Candida albicans. Although the mechanistic effects of EGCG are not fully understood, there are results indicating that EGCG binds to lipid membranes and affects the folic acid metabolism of bacteria and fungi by inhibiting the cytoplasmic enzyme dihydrofolate reductase. This review summarizes the current knowledge and future perspectives on the antibacterial, antifungal and antiviral effects of the green tea constituent EGCG. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation.

              The expansion, or mucification, of the mouse cumulus oophorus in vitro requires the presence of an enabling factor secreted by the oocyte as well as stimulation with follicle-stimulating hormone (FSH). This study focuses on (1) the ability of mouse oocytes to secrete the enabling factor at various times during oocyte growth and maturation, (2) the temporal relationships between the development of the capacity of the oocyte to undergo germinal vesicle breakdown, the ability of the oocyte to secrete cumulus expansion-enabling factor, and the capacity of the cumulus oophorus to undergo expansion, and (3) the role of the oocyte in the differentiation of granulosa cells as functional cumulus cells. Growing, meiotically incompetent oocytes did not produce detectable amounts of cumulus expansion-enabling factor, but fully grown meiosis-arrested oocytes, maturing oocytes, and metaphase II oocytes did. Detectable quantities of enabling factor were produced by zygotes, but not by two-cell stage to morula embryos. The ability of oocytes to secrete cumulus expansion enabling factor and the capacity of cumulus cells to respond to FSH and the enabling factor are temporally correlated with the acquisition of oocyte competence to undergo germinal vesicle breakdown. Mural granulosa cells of antral follicles do not expand in response to FSH even in the presence of cumulus expansion-enabling factor, showing that mural granulosa cells and cumulus cells are functionally distinct cell types. The perioocytic granulosa cells of preantral follicles isolated from 12-day-old mice differentiate into functional cumulus cells during a 7-day period in culture. Oocytectomized granulosa cell complexes grown in medium conditioned by either growing or fully grown oocytes were comparable in size to intact complexes and maintained their 3-dimensional integrity to a greater degree than oocytectomized complexes grown in unconditioned medium. After 7 days, the oocytectomized complexes were stimulated with FSH in the presence of enabling factor, but no expansion was observed whether or not the oocytectomized complexes grew in the presence of oocyte-conditioned medium. These results suggest that a factor(s) secreted by the oocyte affects granulosa cell proliferation and the structural organization of the follicle, but continual close association with the oocyte appears necessary for the differentiation of granulosa cells into functional cumulus cells, insofar as they are capable of undergoing expansion.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                04 March 2021
                : 15
                : 1013-1020
                [1 ]National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, 510642, People’s Republic of China
                [2 ]Department of Tropical Agriculture and Forestry, College of Guangdong Agriculture Industry Business Polytechnic , Guangzhou, Guangdong, 510507, People’s Republic of China
                Author notes
                Correspondence: Hengxi Wei National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, 510642, People’s Republic of ChinaTel +86-20-85284869 Email weihengxi@scau.edu.cn
                © 2021 Huang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                : 05 December 2020
                : 16 February 2021
                Page count
                Figures: 3, Tables: 8, References: 24, Pages: 8
                Funded by: the Natural Science Foundation of Guangdong Province;
                Funded by: the Local Innovative and Research Teams Project of Guangdong Province;
                Funded by: the Science and Technology Innovation Strategy Projects of Guangdong Province;
                This study was supported by grants from the Natural Science Foundation of Guangdong Province (2020A1515010976), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2019BT02N630), the Science and Technology Innovation Strategy Projects of Guangdong Province (2018B020203002).
                Original Research

                Pharmacology & Pharmaceutical medicine
                egcg,porcine oocytes,ivm,antioxidant,anti-apoptosis,ivf
                Pharmacology & Pharmaceutical medicine
                egcg, porcine oocytes, ivm, antioxidant, anti-apoptosis, ivf


                Comment on this article