4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of Bokashi-Composting Process Using Effective Microorganisms-1 in Smart Composting Bin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaysians generate 15,000 tons of food waste per day and dispose of it in the landfill, contributing to greenhouse gas emissions. As a solution for the stated problem, this research aims to produce an excellent quality bokashi compost from household organic waste using a smart composting bin. The bokashi composting method is conducted, whereby banana peels are composted with three types of bokashi brans prepared using 12, 22, and 32 mL of EM-1 mother cultured. During the 14 days composting process, the smart composting bin collected the temperature, air humidity, and moisture content produced by the bokashi-composting process. With the ATmega328 microcontroller, these data were uploaded and synchronized to Google Sheet via WIFI. After the bokashi-composting process was completed, three of each bokashi compost and a control sample were buried in separate black soil for three weeks to determine each compost’s effectiveness. NPK values and the C/N ratio were analyzed on the soil compost. From the research, 12 mL of EM-1 shows the most effective ratio to the bokashi composting, as it resulted in a faster decomposition rate and has an optimum C/N ratio. Bokashi composting can help to reduce household food wastes. An optimum amount of the EM-1 used during the bokashi-composting process will produce good quality soil without contributing to environmental issues.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

          The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature adaptation markedly determines evolution within the genus Saccharomyces.

            The present study uses a mathematical-empirical approach to estimate the cardinal growth temperature parameters (T(min), the temperature below which growth is no longer observed; T(opt), the temperature at which the μ(max) equals its optimal value; μ(opt), the optimal value of μ(max); and T(max), the temperature above which no growth occurs) of 27 yeast strains belonging to different Saccharomyces and non-Saccharomyces species. S. cerevisiae was the yeast best adapted to grow at high temperatures within the Saccharomyces genus, with the highest optimum (32.3°C) and maximum (45.4°C) growth temperatures. On the other hand, S. kudriavzevii and S. bayanus var. uvarum showed the lowest optimum (23.6 and 26.2°C) and maximum (36.8 and 38.4°C) growth temperatures, respectively, confirming that both species are more psychrophilic than S. cerevisiae. The remaining Saccharomyces species (S. paradoxus, S. mikatae, S. arboricolus, and S. cariocanus) showed intermediate responses. With respect to the minimum temperature which supported growth, this parameter ranged from 1.3 (S. cariocanus) to 4.3°C (S. kudriavzevii). We also tested whether these physiological traits were correlated with the phylogeny, which was accomplished by means of a statistical orthogram method. The analysis suggested that the most important shift in the adaptation to grow at higher temperatures occurred in the Saccharomyces genus after the divergence of the S. arboricolus, S. mikatae, S. cariocanus, S. paradoxus, and S. cerevisiae lineages from the S. kudriavzevii and S. bayanus var. uvarum lineages. Finally, our mathematical models suggest that temperature may also play an important role in the imposition of S. cerevisiae versus non-Saccharomyces species during wine fermentation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Sustainable solutions for solid waste management in Southeast Asian countries

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                18 April 2021
                April 2021
                : 21
                : 8
                : 2847
                Affiliations
                [1 ]Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; peisze.lew@ 123456gmail.com (P.S.L.); suryani@ 123456upm.edu.my (S.K.)
                [2 ]Agrosen Lab, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; norashikin@ 123456uitm.edu.my
                [3 ]Faculty of Electrical Engineering, Kampus Pasir Gudang, Universiti Teknologi Mara Cawangan Johor, Shah Alam 40450, Selangor, Malaysia; mohamadfarid@ 123456uitm.edu.my
                Author notes
                Author information
                https://orcid.org/0000-0002-5627-6861
                https://orcid.org/0000-0002-5274-3725
                Article
                sensors-21-02847
                10.3390/s21082847
                8073414
                329e8bdc-dd99-4b8e-ae75-0d4117e0b115
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 February 2021
                : 12 March 2021
                Categories
                Article

                Biomedical engineering
                bokashi composting,smart composting bin,wifi,iot
                Biomedical engineering
                bokashi composting, smart composting bin, wifi, iot

                Comments

                Comment on this article