103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Differential Wiring Analysis of Expression Data Correctly Identifies the Gene Containing the Causal Mutation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription factor (TF) regulation is often post-translational. TF modifications such as reversible phosphorylation and missense mutations, which can act independent of TF expression level, are overlooked by differential expression analysis. Using bovine Piedmontese myostatin mutants as proof-of-concept, we propose a new algorithm that correctly identifies the gene containing the causal mutation from microarray data alone. The myostatin mutation releases the brakes on Piedmontese muscle growth by translating a dysfunctional protein. Compared to a less muscular non-mutant breed we find that myostatin is not differentially expressed at any of ten developmental time points. Despite this challenge, the algorithm identifies the myostatin ‘smoking gun’ through a coordinated, simultaneous, weighted integration of three sources of microarray information: transcript abundance, differential expression, and differential wiring. By asking the novel question “which regulator is cumulatively most differentially wired to the abundant most differentially expressed genes?” it yields the correct answer, “myostatin”. Our new approach identifies causal regulatory changes by globally contrasting co-expression network dynamics. The entirely data-driven ‘weighting’ procedure emphasises regulatory movement relative to the phenotypically relevant part of the network. In contrast to other published methods that compare co-expression networks, significance testing is not used to eliminate connections.

          Author Summary

          Evolution, development, and cancer are governed by regulatory circuits where the central nodes are transcription factors. Consequently, there is great interest in methods that can identify the causal mutation/perturbation responsible for any circuit rewiring. The most widely available high-throughput technology, the microarray, assays the transcriptome. However, many regulatory perturbations are post-transcriptional. This means that they are overlooked by traditional differential gene expression analysis. We hypothesised that by viewing biological systems as networks one could identify causal mutations and perturbations by examining those regulators whose position in the network changes the most. Using muscular myostatin mutant cattle as a proof-of-concept, we propose an analysis that succeeds based solely on microarray expression data from just 27 animals. Our analysis differs from competing network approaches in that we do not use significance testing to eliminate connections. All connections are contrasted, no matter how weak. Further, the identity of target genes is maintained throughout the analysis. Finally, the analysis is ‘weighted’ such that movement relative to the phenotypically most relevant part of the network is emphasised. By identifying the question to which myostatin is the answer, we present a comparison of network connectivity that is potentially generalisable.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Double muscling in cattle due to mutations in the myostatin gene.

          Myostatin (GDF-8) is a member of the transforming growth factor beta superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene regulation by transcription factors and microRNAs.

            The properties of a cell are determined by the genetic information encoded in its genome. Understanding how such information is differentially and dynamically retrieved to define distinct cell types and cellular states is a major challenge facing molecular biology. Gene regulatory factors that control the expression of genomic information come in a variety of flavors, with transcription factors and microRNAs representing the most numerous gene regulatory factors in multicellular genomes. Here, I review common principles of transcription factor- and microRNA-mediated gene regulatory events and discuss conceptual differences in how these factors control gene expression.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dynamic modularity in protein interaction networks predicts breast cancer outcome.

              Changes in the biochemical wiring of oncogenic cells drives phenotypic transformations that directly affect disease outcome. Here we examine the dynamic structure of the human protein interaction network (interactome) to determine whether changes in the organization of the interactome can be used to predict patient outcome. An analysis of hub proteins identified intermodular hub proteins that are co-expressed with their interacting partners in a tissue-restricted manner and intramodular hub proteins that are co-expressed with their interacting partners in all or most tissues. Substantial differences in biochemical structure were observed between the two types of hubs. Signaling domains were found more often in intermodular hub proteins, which were also more frequently associated with oncogenesis. Analysis of two breast cancer patient cohorts revealed that altered modularity of the human interactome may be useful as an indicator of breast cancer prognosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2009
                May 2009
                1 May 2009
                : 5
                : 5
                : e1000382
                Affiliations
                [1]Food Futures Flagship and Livestock Industries, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St. Lucia Brisbane, Queensland, Australia
                The Hebrew University, Israel
                Author notes

                Conceived and designed the experiments: NJH AR BPD. Analyzed the data: NJH AR BPD. Wrote the paper: NJH AR BPD.

                Article
                08-PLCB-RA-0883R3
                10.1371/journal.pcbi.1000382
                2671163
                19412532
                32a5200d-9a23-4ebf-828a-87be47da7746
                Hudson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 October 2008
                : 1 April 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Computational Biology/Systems Biology
                Developmental Biology/Developmental Molecular Mechanisms
                Physiology/Muscle and Connective Tissue

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article