1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found
      Is Open Access

      Estimating the causal effect of liability to disease on healthcare costs using Mendelian Randomization

      , , , ,
      Economics & Human Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age

          Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression

            Background: The number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. However, some genetic variants may not be valid instrumental variables, in particular due to them having more than one proximal phenotypic correlate (pleiotropy). Methods: We view Mendelian randomization with multiple instruments as a meta-analysis, and show that bias caused by pleiotropy can be regarded as analogous to small study bias. Causal estimates using each instrument can be displayed visually by a funnel plot to assess potential asymmetry. Egger regression, a tool to detect small study bias in meta-analysis, can be adapted to test for bias from pleiotropy, and the slope coefficient from Egger regression provides an estimate of the causal effect. Under the assumption that the association of each genetic variant with the exposure is independent of the pleiotropic effect of the variant (not via the exposure), Egger’s test gives a valid test of the null causal hypothesis and a consistent causal effect estimate even when all the genetic variants are invalid instrumental variables. Results: We illustrate the use of this approach by re-analysing two published Mendelian randomization studies of the causal effect of height on lung function, and the causal effect of blood pressure on coronary artery disease risk. The conservative nature of this approach is illustrated with these examples. Conclusions: An adaption of Egger regression (which we call MR-Egger) can detect some violations of the standard instrumental variable assumptions, and provide an effect estimate which is not subject to these violations. The approach provides a sensitivity analysis for the robustness of the findings from a Mendelian randomization investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator

              ABSTRACT Developments in genome‐wide association studies and the increasing availability of summary genetic association data have made application of Mendelian randomization relatively straightforward. However, obtaining reliable results from a Mendelian randomization investigation remains problematic, as the conventional inverse‐variance weighted method only gives consistent estimates if all of the genetic variants in the analysis are valid instrumental variables. We present a novel weighted median estimator for combining data on multiple genetic variants into a single causal estimate. This estimator is consistent even when up to 50% of the information comes from invalid instrumental variables. In a simulation analysis, it is shown to have better finite‐sample Type 1 error rates than the inverse‐variance weighted method, and is complementary to the recently proposed MR‐Egger (Mendelian randomization‐Egger) regression method. In analyses of the causal effects of low‐density lipoprotein cholesterol and high‐density lipoprotein cholesterol on coronary artery disease risk, the inverse‐variance weighted method suggests a causal effect of both lipid fractions, whereas the weighted median and MR‐Egger regression methods suggest a null effect of high‐density lipoprotein cholesterol that corresponds with the experimental evidence. Both median‐based and MR‐Egger regression methods should be considered as sensitivity analyses for Mendelian randomization investigations with multiple genetic variants.
                Bookmark

                Author and article information

                Journal
                Economics & Human Biology
                Economics & Human Biology
                Elsevier BV
                1570677X
                August 2022
                August 2022
                : 46
                : 101154
                Article
                10.1016/j.ehb.2022.101154
                32a679ef-9f96-45b7-9c46-003be59d5a85
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/


                Comments

                Comment on this article