15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 Å. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.

          Author Summary

          Translation of mRNA into protein is the main step for the regulation of gene expression in the chloroplast, the photosynthetic organelle of plant cells. Translation is conducted by the ribosome, a large macromolecular machine composed of RNA and protein. Studies have shown that the composition of the chloroplast ribosome is similar to that of bacterial ribosomes, but also that chloroplast ribosomes contain a number of unique proteins. We present the three-dimensional structure of the chloroplast ribosome, as calculated using cryo-electron microscopy and single-particle reconstruction. Chloroplast-unique structures are clearly visible on our ribosome map, and expand upon a basic bacterial ribosome-like core. The role of these chloroplast-unique ribosomal proteins in regulating translation of chloroplast mRNAs, including light-regulated translation, is suggested by the location of these structures on the ribosome. Biochemical data confirm a predicted function in chloroplast translation for some of the unique proteins. Our model for translation in the chloroplast incorporates decades of biochemical and genetic studies with the structure presented here, and should help guide future studies to understand the molecular mechanisms of translation regulation in the chloroplast.

          Abstract

          Cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          The structural basis of ribosome activity in peptide bond synthesis.

          Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structures of the bacterial ribosome at 3.5 A resolution.

            We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The chloroplast genome.

              M Sugiura (1992)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2007
                7 August 2007
                : 5
                : 8
                : e209
                Affiliations
                [1 ] Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
                [2 ] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
                [3 ] National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, California, United States of America
                Brandeis University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: mayfield@ 123456scripps.edu
                Article
                06-PLBI-RA-2324R3 plbi-05-08-16
                10.1371/journal.pbio.0050209
                1939882
                17683199
                32b85348-cbed-48af-8889-18bfbcf6d25f
                Copyright: © 2007 Manuell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 December 2006
                : 1 June 2007
                Page count
                Pages: 13
                Categories
                Research Article
                Biochemistry
                Cell Biology
                Cell Biology
                Molecular Biology
                Molecular Biology
                Molecular Biology
                Molecular Biology
                In Vitro
                Custom metadata
                Manuell AL, Quispe J, Mayfield SP (2007) Structure of the chloroplast ribosome: Novel domains for translation regulation. PLoS Biol 5(8): e209. doi: 10.1371/journal.pbio.0050209

                Life sciences
                Life sciences

                Comments

                Comment on this article