Synthetic lethality (SL) is a promising form of gene interaction for cancer therapy, as it is able to identify specific genes to target at cancer cells without disrupting normal cells. As high-throughput wet-lab settings are often costly and face various challenges, computational approaches have become a practical complement. In particular, predicting SLs can be formulated as a link prediction task on a graph of interacting genes. Although matrix factorization techniques have been widely adopted in link prediction, they focus on mapping genes to latent representations in isolation, without aggregating information from neighboring genes. Graph convolutional networks (GCN) can capture such neighborhood dependency in a graph. However, it is still challenging to apply GCN for SL prediction as SL interactions are extremely sparse, which is more likely to cause overfitting.