26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

      review-article
      1 , * , 2
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Guillain-Barré syndrome.

          Guillain-Barré syndrome consists of at least four subtypes of acute peripheral neuropathy. Major advances have been made in understanding the mechanisms of some of the subtypes. The histological appearance of the acute inflammatory demyelinating polyradiculoneuropathy (AIDP) subtype resembles experimental autoimmune neuritis, which is predominantly caused by T cells directed against peptides from the myelin proteins P0, P2, and PMP22. The role of T-cell-mediated immunity in AIDP remains unclear and there is evidence for the involvement of antibodies and complement. Strong evidence now exists that axonal subtypes of Guillain-Barré syndrome, acute motor axonal neuropathy (AMAN), and acute motor and sensory axonal neuropathy (AMSAN), are caused by antibodies to gangliosides on the axolemma that target macrophages to invade the axon at the node of Ranvier. About a quarter of patients with Guillain-Barré syndrome have had a recent Campylobacter jejuni infection, and axonal forms of the disease are especially common in these people. The lipo-oligosaccharide from the C jejuni bacterial wall contains ganglioside-like structures and its injection into rabbits induces a neuropathy that resembles acute motor axonal neuropathy. Antibodies to GM1, GM1b, GD1a, and GalNac-GD1a are in particular implicated in acute motor axonal neuropathy and, with the exception of GalNacGD1a, in acute motor and sensory axonal neuropathy. The Fisher's syndrome subtype is especially associated with antibodies to GQ1b, and similar cross-reactivity with ganglioside structures in the wall of C jejuni has been discovered. Anti-GQ1b antibodies have been shown to damage the motor nerve terminal in vitro by a complement-mediated mechanism. Results of international randomised trials have shown equivalent efficacy of both plasma exchange and intravenous immunoglobulin, but not corticosteroids, in hastening recovery from Guillain-Barré syndrome. Further research is needed to discover treatments to prevent 20% of patients from being left with persistent and significant disability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Campylobacter jejuni: molecular biology and pathogenesis.

            Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lymphocyte transformation test in the diagnosis of drug hypersensitivity.

              Diagnosis of drug hypersensitivity is difficult, as an enormous amount of different drugs can elicit various immune-mediated diseases with distinct pathomechanism. The lymphocyte transformation test (LTT) measures the proliferation of T cells to a drug in vitro--from which one concludes to a previous in vivo reaction due to a sensitization. This concept of the LTT has been confirmed by the generation of drug-specific T-cell clones and the finding that drugs can directly interact with the T-cell receptor, without previous metabolism or need to bind to proteins. In this review, technical aspects and usefulness of this test for the diagnosis of drug hypersensitivity are discussed. The main advantage of this test is its applicability with many different drugs in different immune reactions, as drug-specific T cell are almost always involved in drug hypersensitivity reactions. Its main disadvantages are that an in vitro proliferation of T cells to a drug is difficult to transfer to the clinical situation and that the test per se is rather cumbersome and technically demanding. In addition, its sensitivity is limited (for beta-lactam allergy it is in the range of 60-70%), - although at least in our hands - it is higher than of other tests for drug hypersensitivity diagnosis. Consequently, drug hypersensitivity diagnosis needs to rely on a combination of history and different tests, as none of the single tests available has per se a sufficiently good sensitivity. Within this setting, the LTT has proven to be a useful test for the diagnosis of drug hypersensitivity reactions and helped to better understand these reactions. Further work on the simplification of this test and systematic evaluation of its sensitivity and specificity in some main groups of drugs are necessary to make this test more widely available.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                13 August 2013
                : 2013
                : 852195
                Affiliations
                1Immune Regulation Laboratory, World Premier International-Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 865-0871, Japan
                2Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014, India
                Author notes
                *Kishan Kumar Nyati: kishan.nyati@ 123456yahoo.com

                Academic Editor: Hannes Stockinger

                Article
                10.1155/2013/852195
                3755430
                24000328
                32ce4368-cc95-4c07-ba05-5dc908ab8447
                Copyright © 2013 K. K. Nyati and R. Nyati.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2013
                : 3 July 2013
                Categories
                Review Article

                Comments

                Comment on this article