Blog
About

9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk factors for pulmonary arterial hypertension in patients with tuberculosis-destroyed lungs and their clinical characteristics compared with patients with chronic obstructive pulmonary disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and objective

          There are limited data on pulmonary arterial hypertension (PAH) in patients with tuberculosis-destroyed lung (TDL), a sequela of pulmonary tuberculosis. We identified the risk factors for PAH and their effects on acute exacerbation and mortality in patients with TDL, as well as the clinical differences in patients with chronic obstructive pulmonary disease (COPD) and PAH.

          Methods

          A retrospective cohort study was conducted from 2010 through 2015 in a municipal referral hospital in South Korea. PAH was defined when echocardiographic pulmonary arterial pressure (PAP) was >40 mmHg. The clinical features and course of TDL patients with or without PAH were evaluated and differences between patients with COPD and PAH were analyzed.

          Results

          Among the 195 patients with TDL, echocardiographic data were available in 53 patients, and their mean PAP was 50.72±23.99 mmHg. The PAH group (n=37) had a smaller lung volume (forced vital capacity % predicted, 51.55% vs 72.37%, P<0.001) and more extensively destroyed lungs (3.27 lobes vs 2 lobes, P<0.001) than those in the non-PAH group (n=16). A higher PAP was significantly correlated with a higher frequency of acute exacerbation ( r=0.32, P=0.02). Multivariate analyses did not reveal any significant risk factors contributing to PAH in patients with TDL. Compared to COPD patients with PAH, TDL patients with PAH have smaller lung volume but a less severe airflow limitation. Tricuspid regurgitation and a D-shaped left ventricle during diastole were more frequently observed in TDL patients. The risk of exacerbation was not different between patients with PAH in COPD and TDL.

          Conclusion

          PAH in patients with TDL was associated with severity of lung destruction but risk of exacerbation and mortality did not significantly differ between patients with PAH and without PAH.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

          Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary hypertension in COPD.

            Mild-to-moderate pulmonary hypertension is a common complication of chronic obstructive pulmonary disease (COPD); such a complication is associated with increased risks of exacerbation and decreased survival. Pulmonary hypertension usually worsens during exercise, sleep and exacerbation. Pulmonary vascular remodelling in COPD is the main cause of increase in pulmonary artery pressure and is thought to result from the combined effects of hypoxia, inflammation and loss of capillaries in severe emphysema. A small proportion of COPD patients may present with "out-of-proportion" pulmonary hypertension, defined by a mean pulmonary artery pressure >35-40 mmHg (normal is no more than 20 mmHg) and a relatively preserved lung function (with low to normal arterial carbon dioxide tension) that cannot explain prominent dyspnoea and fatigue. The prevalence of out-of-proportion pulmonary hypertension in COPD is estimated to be very close to the prevalence of idiopathic pulmonary arterial hypertension. Cor pulmonale, defined as right ventricular hypertrophy and dilatation secondary to pulmonary hypertension caused by respiratory disorders, is common. More studies are needed to define the contribution of cor pulmonale to decreased exercise capacity in COPD. These studies should include improved imaging techniques and biomarkers, such as the B-type natriuretic peptide and exercise testing protocols with gas exchange measurements. The effects of drugs used in pulmonary arterial hypertension should be tested in chronic obstructive pulmonary disease patients with severe pulmonary hypertension. In the meantime, the treatment of cor pulmonale in chronic obstructive pulmonary disease continues to rest on supplemental oxygen and a variety of measures aimed at the relief of airway obstruction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies.

              In view of the European Association of Echocardiography (EAE) mission statement "To promote excellence in clinical diagnosis, research, technical development, and education in cardiovascular ultrasound in Europe" and the increasing demand for standardization and quality control, the EAE have established recommendations and guidelines for standardization of echocardiography performance, data acquisition (images, measurements and morphologic descriptors), digital storage and reporting of echocardiographic studies. The aim of these recommendations is to provide a European consensus document on the minimum acceptable requirements for the clinical practice of echocardiography today and thus improve the quality and consistency of echocardiographic practice in Europe.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2017
                16 August 2017
                : 12
                : 2433-2443
                Affiliations
                [1 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
                [2 ]Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
                Author notes
                Correspondence: Deog Kyeom Kim, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, 20 Boramaero-5-Gil, Dongjak-Gu, Seoul, 156-707, Republic of Korea, Tel +82 2 870 2228, Fax +82 2 831 2826, Email kimdkmd@ 123456gmail.com
                Article
                copd-12-2433
                10.2147/COPD.S136304
                5565253
                © 2017 Jo et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article