72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Odorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/e KO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.

          Author Summary

          Most herbivorous insects specialize on one or a few host plants; understanding the processes and genetics underlying this specialization has broad implications across biology. Drosophila sechellia, a fruit fly endemic to the Seychelles, feeds exclusively on the ripe fruit of Morinda citrifolia, a tropical plant commonly known as Tahitian Noni. Although other fruit flies never approach this fruit because of its toxins, D. sechellia is resistant and is actually attracted by the same toxins. D. sechellia is a close relative of D. melanogaster, an established model species of genetics. By comparing D. melanogaster and D. sechellia, we revealed that two genes encoding odorant-binding proteins, Obp57d and Obp57e, are not only involved in the fruit fly's taste perception, but can also change the behavioral response of the flies to the toxins contained in the fruit. By knowing how an insect's food preference is determined by its genes, we can gain insight into how insect lifestyles evolve and investigate whether such changes can lead to the formation of new species. We can also begin to understand how to manipulate insects' behavior by changing their preference for particular substances.

          Abstract

          Hybrids of Drosophila melanogaster mutants and D. sechellia reveal genes involved in the behavioral difference that makes sechellia specialized to its host plant, with implications for understanding plant-herbivore interactions and speciation

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of the malaria mosquito Anopheles gambiae.

          Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect host location: a volatile situation.

            Locating a host plant is crucial for a phytophagous (herbivorous) insect to fulfill its nutritional requirements and to find suitable oviposition sites. Insects can locate their hosts even though the host plants are often hidden among an array of other plants. Plant volatiles play an important role in this host-location process. The recognition of a host plant by these olfactory signals could occur by using either species-specific compounds or specific ratios of ubiquitous compounds. Currently, most studies favor the second scenario, with strong evidence that plant discrimination is due to central processing of olfactory signals by the insect, rather than their initial detection. Furthermore, paired or clustered olfactory receptor neurons might enable fine-scale spatio-temporal resolution of the complex signals encountered when ubiquitous compounds are used.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Direct and ecological costs of resistance to herbivory

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2007
                24 April 2007
                : 5
                : 5
                : e118
                Affiliations
                [1]Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
                Duke University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: mts@ 123456comp.metro-u.ac.jp
                Article
                06-PLBI-RA-0167R3 plbi-05-05-11
                10.1371/journal.pbio.0050118
                1854911
                17456006
                32ec8d95-92de-4b60-b355-096be3764c7a
                Copyright: © 2007 Matsuo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 31 January 2006
                : 22 February 2007
                Page count
                Pages: 12
                Categories
                Research Article
                Ecology
                Evolutionary Biology
                Genetics and Genomics
                Neuroscience
                Eukaryotes
                Animals
                Arthropods
                Insects
                Drosophila
                Custom metadata
                Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5(5): e118. doi: 10.1371/journal.pbio.0050118

                Life sciences
                Life sciences

                Comments

                Comment on this article