2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

          As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease.

            Uraemic toxins are considered to be emerging mortality risk factors in chronic kidney disease (CKD) patients. p-Cresol (a prototype protein-bound uraemic retention solute) has been shown to exert toxic effects in vitro. Recently, it has been demonstrated that p-cresol is present in plasma as its sulphate conjugate, p-cresylsulphate. The present study evaluated the distribution of free and total p-cresylsulphate and sought to determine whether these parameters were associated with vascular calcification, arterial stiffness and mortality risk in a cohort of CKD patients. One hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; males: 60%) at different stages of CKD (8% at Stage 2, 26.5% at Stage 3, 26.5% at Stage 4, 7% at Stage 5 and 32% at Stage 5D) were enrolled in this study. Baseline total and free p-cresylsulphate presented an inverse relationship with renal function and were significantly associated with vascular calcification. During the study period (mean follow-up period: 779 +/- 185 days), 38 patients died [including 22 from cardiovascular (CV) causes]. In crude survival analyses, free (but not total) p-cresylsulphate was shown to be a predictor of overall and CV death. Higher free p-cresylsulphate levels (>0.051 mg/100 mL; median) were associated with mortality independently of well-known predictors of survival such as age, vascular calcification, anaemia and inflammation. Serum levels of free and total p-cresylsulphate (the main in vivo circulating metabolites of p-cresol) were elevated in later CKD stages. However, only free p-cresylsulphate seems to be a predictor of survival in CKD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The function of our microbiota: who is out there and what do they do?

              Current meta-omics developments provide a portal into the functional potential and activity of the intestinal microbiota. The comparative and functional meta-omics approaches have made it possible to get a molecular snap shot of microbial function at a certain time and place. To this end, metagenomics is a DNA-based approach, metatranscriptomics studies the total transcribed RNA, metaproteomics focuses on protein levels and metabolomics describes metabolic profiles. Notably, the metagenomic toolbox is rapidly expanding and has been instrumental in the generation of draft genome sequences of over 1000 human associated microorganisms as well as an astonishing 3.3 million unique microbial genes derived from the intestinal tract of over 100 European adults. Remarkably, it appeared that there are at least 3 clusters of co-occurring microbial species, termed enterotypes, that characterize the intestinal microbiota throughout various continents. The human intestinal microbial metagenome further revealed unique functions carried out in the intestinal environment and provided the basis for newly discovered mechanisms for signaling, vitamin production and glycan, amino-acid and xenobiotic metabolism. The activity and composition of the microbiota is affected by genetic background, age, diet, and health status of the host. In its turn the microbiota composition and activity influence host metabolism and disease development. Exemplified by the differences in microbiota composition and activity between breast- as compared to formula-fed babies, healthy and malnourished infants, elderly and centenarians as compared to youngsters, humans that are either lean or obese and healthy or suffering of inflammatory bowel diseases (IBD). In this review we will focus on our current understanding of the functionality of the human intestinal microbiota based on all available metagenome, metatranscriptome, and metaproteome results
                Bookmark

                Author and article information

                Journal
                Journal of Nephrology
                J Nephrol
                Springer Science and Business Media LLC
                1121-8428
                1724-6059
                January 23 2019
                Article
                10.1007/s40620-019-00589-z
                © 2019

                Comments

                Comment on this article