20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel electrode technologies for neural recordings

      ,
      Nature Reviews Neuroscience
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">Neural recording electrode technologies have contributed considerably to neuroscience by enabling the extracellular detection of low-frequency local field potential oscillations and high-frequency action potentials of single units. Nevertheless, several long-standing limitations exist, including low multiplexity, deleterious chronic immune responses and long-term recording instability. Driven by initiatives encouraging the generation of novel neurotechnologies and the maturation of technologies to fabricate high-density electronics, novel electrode technologies are emerging. Here, we provide an overview of recently developed neural recording electrode technologies with high spatial integration, long-term stability and multiple functionalities. We describe how these emergent neurotechnologies can approach the ultimate goal of illuminating chronic brain activity with minimal disruption of the neural environment, thereby providing unprecedented opportunities for neuroscience research in the future. </p>

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theta oscillations in the hippocampus.

            Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The variable discharge of cortical neurons: implications for connectivity, computation, and information coding.

              Cortical neurons exhibit tremendous variability in the number and temporal distribution of spikes in their discharge patterns. Furthermore, this variability appears to be conserved over large regions of the cerebral cortex, suggesting that it is neither reduced nor expanded from stage to stage within a processing pathway. To investigate the principles underlying such statistical homogeneity, we have analyzed a model of synaptic integration incorporating a highly simplified integrate and fire mechanism with decay. We analyzed a "high-input regime" in which neurons receive hundreds of excitatory synaptic inputs during each interspike interval. To produce a graded response in this regime, the neuron must balance excitation with inhibition. We find that a simple integrate and fire mechanism with balanced excitation and inhibition produces a highly variable interspike interval, consistent with experimental data. Detailed information about the temporal pattern of synaptic inputs cannot be recovered from the pattern of output spikes, and we infer that cortical neurons are unlikely to transmit information in the temporal pattern of spike discharge. Rather, we suggest that quantities are represented as rate codes in ensembles of 50-100 neurons. These column-like ensembles tolerate large fractions of common synaptic input and yet covary only weakly in their spike discharge. We find that an ensemble of 100 neurons provides a reliable estimate of rate in just one interspike interval (10-50 msec). Finally, we derived an expression for the variance of the neural spike count that leads to a stable propagation of signal and noise in networks of neurons-that is, conditions that do not impose an accumulation or diminution of noise. The solution implies that single neurons perform simple algebra resembling averaging, and that more sophisticated computations arise by virtue of the anatomical convergence of novel combinations of inputs to the cortical column from external sources.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Nature
                1471-003X
                1471-0048
                March 4 2019
                Article
                10.1038/s41583-019-0140-6
                6531316
                30833706
                33053ebe-2b69-4cc3-a0a1-dcd33f108a85
                © 2019

                http://www.springer.com/tdm


                Comments

                Comment on this article