21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Secondary nuclear targeting of mesoporous silica nano-particles for cancer-specific drug delivery based on charge inversion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor. Citraconic anhydride (Cit) was used to invert the charge of the TAT peptide in neutral or weak alkaline conditions so that the positively charged YSA peptide could combine with the TAT peptide through electrostatic attraction. The FITC fluorescence was quenched by the spatial approach of BHQ1 after the two peptides bound to each other. However, the Cit-amino bond was unstable in the acidic atmosphere, so the positive charge of the TAT peptide was restored and the positively charged YSA moiety was repelled. The FITC fluorescence was recovered after the YSA-BHQ1 moiety was removed, and the TAT peptide led the nano-particles into the nucleolus. This nano-drug delivery system was stable at physiological pH, rapidly released the drug in acidic buffer, and was easily taken up by MCF-7 cells. Compared with free doxorubicin hydrochloride at an equal concentration, this modified MSN loaded with doxorubicin molecules had an equivalent inhibitory effect on MCF-7 cells. This nano-drug delivery system is thus a promising method for simultaneous cancer diagnosis and therapy.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.

          In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The molecular architecture of the nuclear pore complex.

            Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC's 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of 'columns'. These findings provide clues to the evolutionary origins of the NPC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles.

              Most present nanodrug delivery systems have been developed to target cancer cells but rarely nuclei. However, nuclear-targeted drug delivery is expected to kill cancer cells more directly and efficiently. In this work, TAT peptide has been employed to conjugate onto mesoporous silica nanoparticles (MSNs-TAT) with high payload for nuclear-targeted drug delivery for the first time. Monodispersed MSNs-TAT of varied particle sizes have been synthesized to investigate the effects of particle size and TAT conjugation on the nuclear membrane penetrability of MSNs. MSNs-TAT with a diameter of 50 nm or smaller can efficiently target the nucleus and deliver the active anticancer drug doxorubicin (DOX) into the targeted nucleus, killing these cancer cells with much enhanced efficiencies. This study may provide an effective strategy for the design and development of cell-nuclear-targeted drug delivery.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                25 October 2016
                20 September 2016
                : 7
                : 43
                : 70100-70112
                Affiliations
                1 Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, 210009, China
                2 Medical School, Southeast University, Nanjing, 210009, China
                Author notes
                Correspondence to: Xiaobo Fan, 101011951@ 123456seu.edu.cn
                Article
                12149
                10.18632/oncotarget.12149
                5342538
                27661121
                331c942c-7349-45fa-9819-21cfa67c05d3
                Copyright: © 2016 Zhao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 April 2016
                : 14 September 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                peptide charge inversion,secondary nuclear targeting,mesoporous silica,cancer,delivery

                Comments

                Comment on this article