12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical studies with oral lipid based formulations of poorly soluble compounds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This work is an attempt to give an overview of the clinical data available on lipid based formulations. Lipid and surfactant based formulations are recognized as a feasible approach to improve bioavailability of poorly soluble compounds. However not many clinical studies have been published so far. Several drug products intended for oral administration have been marketed utilizing lipid and surfactant based formulations. Sandimmune ® and Sandimmune Neoral ® (cyclosporin A, Novartis), Norvir ® (ritonavir), and Fortovase ® (saquinavir) have been formulated in self-emulsifying drug delivery systems (SEDDS). This review summarizes published pharmacokinetic studies of orally administered lipid based formulations of poorly aqueous soluble drugs in human subjects. Special attention has been paid to the physicochemical characteristics of the formulations, when available and the impact of these properties on the in vivo performance of the formulation. Equally important is the effect of concurrent food intake on the bioavailability of poorly soluble compounds. The effect of food on the bioavailability of compounds formulated in lipid and surfactant based formulations is also reviewed.

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Microemulsion-based media as novel drug delivery systems.

          Microemulsions are clear, stable, isotropic mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. These systems are currently of interest to the pharmaceutical scientist because of their considerable potential to act as drug delivery vehicles by incorporating a wide range of drug molecules. In order to appreciate the potential of microemulsions as delivery vehicles, this review gives an overview of the formation and phase behaviour and characterization of microemulsions. The use of microemulsions and closely related microemulsion-based systems as drug delivery vehicles is reviewed, with particular emphasis being placed on recent developments and future directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solubilizing excipients in oral and injectable formulations.

            A review of commercially available oral and injectable solution formulations reveals that the solubilizing excipients include water-soluble organic solvents (polyethylene glycol 300, polyethylene glycol 400, ethanol, propylene glycol, glycerin, N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylsulfoxide), non-ionic surfactants (Cremophor EL, Cremophor RH 40, Cremophor RH 60, d-alpha-tocopherol polyethylene glycol 1000 succinate, polysorbate 20, polysorbate 80, Solutol HS 15, sorbitan monooleate, poloxamer 407, Labrafil M-1944CS, Labrafil M-2125CS, Labrasol, Gellucire 44/14, Softigen 767, and mono- and di-fatty acid esters of PEG 300, 400, or 1750), water-insoluble lipids (castor oil, corn oil, cottonseed oil, olive oil, peanut oil, peppermint oil, safflower oil, sesame oil, soybean oil, hydrogenated vegetable oils, hydrogenated soybean oil, and medium-chain triglycerides of coconut oil and palm seed oil), organic liquids/semi-solids (beeswax, d-alpha-tocopherol, oleic acid, medium-chain mono- and diglycerides), various cyclodextrins (alpha-cyclodextrin, beta-cyclodextrin, hydroxypropyl-beta-cyclodextrin, and sulfobutylether-beta-cyclodextrin), and phospholipids (hydrogenated soy phosphatidylcholine, distearoylphosphatidylglycerol, L-alpha-dimyristoylphosphatidylcholine, L-alpha-dimyristoylphosphatidylglycerol). The chemical techniques to solubilize water-insoluble drugs for oral and injection administration include pH adjustment, cosolvents, complexation, microemulsions, self-emulsifying drug delivery systems, micelles, liposomes, and emulsions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs.

              The oral delivery of hydrophobic drugs presents a major challenge because of the low aqueous solubility of such compounds. Self-emulsifying drug delivery systems (SEDDS), which are isotropic mixtures of oils, surfactants, solvents and co-solvents/surfactants, can be used for the design of formulations in order to improve the oral absorption of highly lipophilic drug compounds. SEDDS can be orally administered in soft or hard gelatin capsules and form fine relatively stable oil-in-water (o/w) emulsions upon aqueous dilution owing to the gentle agitation of the gastrointestinal fluids. The efficiency of oral absorption of the drug compound from the SEDDS depends on many formulation-related parameters, such as surfactant concentration, oil/surfactant ratio, polarity of the emulsion, droplet size and charge, all of which in essence determine the self-emulsification ability. Thus, only very specific pharmaceutical excipient combinations will lead to efficient self-emulsifying systems. Although many studies have been carried out, there are few drug products on the pharmaceutical market formulated as SEDDS confirming the difficulty of formulating hydrophobic drug compounds into such formulations. At present, there are four drug products, Sandimmune and Sandimmun Neoral (cyclosporin A), Norvir (ritonavir), and Fortovase (saquinavir) on the pharmaceutical market, the active compounds of which have been formulated into specific SEDDS. Significant improvement in the oral bioavailability of these drug compounds has been demonstrated for each case. The fact that almost 40% of the new drug compounds are hydrophobic in nature implies that studies with SEDDS will continue, and more drug compounds formulated as SEDDS will reach the pharmaceutical market in the future.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                August 2007
                August 2007
                : 3
                : 4
                : 591-604
                Affiliations
                Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen Copenhagen, Denmark
                Author notes
                Correspondence: Dr Dimitrios G Fatouros, Department of Pharmaceutics and Analytical Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark Tel + 45 35 30 62 88 Fax + 45 35 30 60 30 Email df@ 123456dfuni.dk
                [1]

                Contributed equally to this work

                Article
                2374933
                18472981
                3325d45f-115b-43df-86b7-7e0838d2c40b
                © 2007 Dove Medical Press Limited. All rights reserved
                History
                Categories
                Review

                Medicine
                human clinical studies,poorly soluble compounds,food effect,lipophilic compounds,lipid formulations,sedds,pharmacokinetics,emulsions

                Comments

                Comment on this article