2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uric Acid and Arterial Stiffness

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperuricemia is usually associated with hypertension, diabetes mellitus, metabolic syndrome and chronic kidney disease. Accumulating data from epidemiological studies indicate an association of increased uric acid (UA) with cardiovascular diseases. Possible pathogenic mechanisms include enhancement of oxidative stress and systemic inflammation caused by hyperuricemia. Arterial stiffness may be one of the possible pathways between hyperuricemia and cardiovascular disease, but a clear relationship between increased UA and vascular alterations has not been confirmed. The review summarizes the epidemiological studies investigating the relationship between UA and arterial stiffness and highlights the results of interventional studies evaluating arterial stiffness parameters in patients treated with UA-lowering drugs.

          Related collections

          Most cited references 120

          • Record: found
          • Abstract: not found
          • Article: not found

          Transforming growth factor beta in tissue fibrosis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells.

            Recent experimental and human studies have shown that hyperuricemia is associated with hypertension, systemic inflammation, and cardiovascular disease mediated by endothelial dysfunction and pathologic vascular remodeling. Elevated levels of C-reactive protein (CRP) have emerged as one of the most powerful independent predictors of cardiovascular disease. In addition to being a marker of inflammation, recent evidence suggests that CRP may participate directly in the development of atherosclerotic vascular disease. For investigating whether uric acid (UA)-induced inflammatory reaction and vascular remodeling is related to CRP, the UA-induced expression of CRP in human vascular smooth muscle cells (HVSMC) and human umbilical vein endothelial cells (HUVEC) was examined, as well as the pathogenetic role of CRP in vascular remodeling. It is interesting that HVSMC and HUVEC expressed CRP mRNA and protein constitutively, revealing that vascular cells are another source of CRP production. UA (6 to 12 mg/dl) upregulated CRP mRNA expression in HVSMC and HUVEC with a concomitant increase in CRP release into cell culture media. Inhibition of p38 or extracellular signal-regulated kinase 44/42 significantly suppressed UA-induced CRP expression, implicating these pathways in the response to UA. UA stimulated HVSMC proliferation whereas UA inhibited serum-induced proliferation of HUVEC assessed by 3H-thymidine uptake and cell counting, which was attenuated by co-incubation with probenecid, the organic anion transport inhibitor, suggesting that entry of UA into cells is responsible for CRP expression. UA also increased HVSMC migration and inhibited HUVEC migration. In HUVEC, UA reduced nitric oxide (NO) release. Treatment of vascular cells with anti-CRP antibody revealed a reversal of the effect of UA on cell proliferation and migration in HVSMC and NO release in HUVEC, which suggests that CRP expression may be responsible for UA-induced vascular remodeling. This is the first study to show that soluble UA, at physiologic concentrations, has profound effects on human vascular cells. The observation that UA alters the proliferation/migration and NO release of human vascular cells, mediated by the expression of CRP, calls for careful reconsideration of the role of UA in hypertension and vascular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for uric acid in the progression of renal disease.

              Hyperuricemia is associated with renal disease, but it is usually considered a marker of renal dysfunction rather than a risk factor for progression. Recent studies have reported that mild hyperuricemia in normal rats induced by the uricase inhibitor, oxonic acid (OA), results in hypertension, intrarenal vascular disease, and renal injury. This led to the hypothesis that uric acid may contribute to progressive renal disease. To examine the effect of hyperuricemia on renal disease progression, rats were fed 2% OA for 6 wk after 5/6 remnant kidney (RK) surgery with or without the xanthine oxidase inhibitor, allopurinol, or the uricosuric agent, benziodarone. Renal function and histologic studies were performed at 6 wk. Given observations that uric acid induces vascular disease, the effect of uric acid on vascular smooth muscle cells in culture was also examined. RK rats developed transient hyperuricemia (2.7 mg/dl at week 2), but then levels returned to baseline by week 6 (1.4 mg/dl). In contrast, RK+OA rats developed higher and more persistent hyperuricemia (6 wk, 3.2 mg/dl). Hyperuricemic rats demonstrated higher BP, greater proteinuria, and higher serum creatinine than RK rats. Hyperuricemic RK rats had more renal hypertrophy and greater glomerulosclerosis (24.2 +/- 2.5 versus 17.5 +/- 3.4%; P < 0.05) and interstitial fibrosis (1.89 +/- 0.45 versus 1.52 +/- 0.47; P < 0.05). Hyperuricemic rats developed vascular disease consisting of thickening of the preglomerular arteries with smooth muscle cell proliferation; these changes were significantly more severe than a historical RK group with similar BP. Allopurinol significantly reduced uric acid levels and blocked the renal functional and histologic changes. Benziodarone reduced uric acid levels less effectively and only partially improved BP and renal function, with minimal effect on the vascular changes. To better understand the mechanism for the vascular disease, the expression of COX-2 and renin were examined. Hyperuricemic rats showed increased renal renin and COX-2 expression, the latter especially in preglomerular arterial vessels. In in vitro studies, cultured vascular smooth muscle cells incubated with uric acid also generated COX-2 with time-dependent proliferation, which was prevented by either a COX-2 or TXA-2 receptor inhibitor. Hyperuricemia accelerates renal progression in the RK model via a mechanism linked to high systemic BP and COX-2-mediated, thromboxane-induced vascular disease. These studies provide direct evidence that uric acid may be a true mediator of renal disease and progression.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                TCRM
                tcriskman
                Therapeutics and Clinical Risk Management
                Dove
                1176-6336
                1178-203X
                28 January 2020
                2020
                : 16
                : 39-54
                Affiliations
                [1 ]2nd Department of Internal Medicine
                [2 ]4th Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy , Cluj-Napoca, Romania
                Author notes
                Correspondence: Ioana Para 4th Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy , 8 Babes Street, Cluj-Napoca400012, Romania Email ioana.para@yahoo.com
                Article
                232033
                10.2147/TCRM.S232033
                6995306
                © 2020 Albu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 1, References: 154, Pages: 16
                Categories
                Review

                Medicine

                cardiovascular risk, arterial stiffness, uric acid

                Comments

                Comment on this article