16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Scale-Dependent Power Asymmetry from Isocurvature Perturbations

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          If the hemispherical power asymmetry observed in the cosmic microwave background (CMB) on large angular scales is attributable to a superhorizon curvaton fluctuation, then the simplest model predicts that the primordial density fluctuations should be similarly asymmetric on all smaller scales. The distribution of high-redshift quasars was recently used to constrain the power asymmetry on scales k ~ 1.5h/Mpc, and the upper bound on the amplitude of the asymmetry was found to be a factor of six smaller than the amplitude of the asymmetry in the CMB. We show that it is not possible to generate an asymmetry with this scale dependence by changing the relative contributions of the inflaton and curvaton to the adiabatic power spectrum. Instead, we consider curvaton scenarios in which the curvaton decays after dark matter freezes out, thus generating isocurvature perturbations. If there is a superhorizon fluctuation in the curvaton field, then the rms amplitude of these perturbations will be asymmetric, and the asymmetry will be most apparent on large angular scales in the CMB. We find that it is only possible to generate the observed asymmetry in the CMB while satisfying the quasar constraint if the curvaton's contribution to the total dark matter density is small, but nonzero. The model also requires that the majority of the primordial power comes from fluctuations in the inflaton field. Future observations and analyses of the CMB will test this model because the power asymmetry generated by this model has a specific spectrum, and the model requires that the current upper bounds on isocurvature power are nearly saturated.

          Related collections

          Author and article information

          Journal
          03 July 2009
          Article
          10.1103/PhysRevD.80.083507
          0907.0705
          333b7428-3e7e-4048-85e8-fb7d64818b70

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Phys.Rev.D80:083507,2009
          18 pages, 6 figures, submitted to PRD
          astro-ph.CO

          Comments

          Comment on this article