60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cascaded logic gates in nanophotonic plasmon networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies.

          Abstract

          Optical computing, involving on-chip integrated logic units, could provide improved performance over semiconductor-based computing. Here, a binary NOR gate is developed from cascaded OR and NOT gates in four-terminal plasmonic nanowire networks; the work could lead to new optical computing technologies.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Surface plasmon subwavelength optics.

          Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unidirectional emission of a quantum dot coupled to a nanoantenna.

            Nanoscale quantum emitters are key elements in quantum optics and sensing. However, efficient optical excitation and detection of such emitters involves large solid angles because their interaction with freely propagating light is omnidirectional. Here, we present unidirectional emission of a single emitter by coupling to a nanofabricated Yagi-Uda antenna. A quantum dot is placed in the near field of the antenna so that it drives the resonant feed element of the antenna. The resulting quantum-dot luminescence is strongly polarized and highly directed into a narrow forward angular cone. The directionality of the quantum dot can be controlled by tuning the antenna dimensions. Our results show the potential of optical antennas to communicate energy to, from, and between nano-emitters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              All-optical control of light on a silicon chip.

              Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components. Furthermore, it is highly desirable to use silicon--the dominant material in the microelectronic industry--as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III-V compound semiconductors, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                July 2011
                12 July 2011
                : 2
                : 387
                Affiliations
                [1 ]simpleBeijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Box 603-146, Beijing 100190, China.
                [2 ]simpleDepartment of Applied Physics, Chalmers University of Technology , Göteborg 412 96, Sweden.
                [3 ]simpleDivision of Solid State Physics/The Nanometer Structure Consortium, Lund University , Box 118, Lund S-22100, Sweden.
                Author notes
                Article
                ncomms1388
                10.1038/ncomms1388
                3144585
                21750541
                3343b85e-931e-47d1-ba7b-1a251b5d2bc1
                Copyright © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 01 April 2011
                : 10 June 2011
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article