25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vascular Endothelial Cell-Specific Connective Tissue Growth Factor (CTGF) Is Necessary for Development of Chronic Hypoxia-Induced Pulmonary Hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic hypoxia frequently complicates the care of patients with interstitial lung disease, contributing to the development of pulmonary hypertension (PH), and premature death. Connective tissue growth factor (CTGF), a matricellular protein of the Cyr61/CTGF/Nov (CCN) family, is known to exacerbate vascular remodeling within the lung. We have previously demonstrated that vascular endothelial-cell specific down-regulation of CTGF is associated with protection against the development of PH associated with hypoxia, though the mechanism for this effect is unknown. In this study, we generated a transgenic mouse line in which the Ctgf gene was floxed and deleted in vascular endothelial cells that expressed Cre recombinase under the control of VE-Cadherin promoter (eCTGF KO mice). Lack of vascular endothelial-derived CTGF protected against the development of PH secondary to chronic hypoxia, as well as in another model of bleomycin-induced pulmonary hypertension. Importantly, attenuation of PH was associated with a decrease in infiltrating inflammatory cells expressing CD11b or integrin α M (ITGAM), a known adhesion receptor for CTGF, in the lungs of hypoxia-exposed eCTGF KO mice. Moreover, these pathological changes were associated with activation of—Rho GTPase family member—cell division control protein 42 homolog (Cdc42) signaling, known to be associated with alteration in endothelial barrier function. These data indicate that endothelial-specific deletion of CTGF results in protection against development of chronic-hypoxia induced PH. This protection is conferred by both a decrease in inflammatory cell recruitment to the lung, and a reduction in lung Cdc42 activity. Based on our studies, CTGF inhibitor treatment should be investigated in patients with PH associated with chronic hypoxia secondary to chronic lung disease.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha.

          Chronic hypoxia induces polycythemia, pulmonary hypertension, right ventricular hypertrophy, and weight loss. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to hypoxia, including erythropoietin, vascular endothelial growth factor, and glycolytic enzymes. Expression of the HIF-1alpha subunit increases exponentially as O2 concentration is decreased. Hif1a-/- mouse embryos with complete deficiency of HIF-1alpha due to homozygosity for a null allele at the Hif1a locus die at midgestation, with multiple cardiovascular malformations and mesenchymal cell death. Hif1a+/- heterozygotes develop normally and are indistinguishable from Hif1a+/+ wild-type littermates when maintained under normoxic conditions. In this study, the physiological responses of Hif1a+/- and Hif1a+/+ mice exposed to 10% O2 for one to six weeks were analyzed. Hif1a+/- mice demonstrated significantly delayed development of polycythemia, right ventricular hypertrophy, pulmonary hypertension, and pulmonary vascular remodeling and significantly greater weight loss compared with wild-type littermates. These results indicate that partial HIF-1alpha deficiency has significant effects on multiple systemic responses to chronic hypoxia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis.

            Lung fibroblasts are key mediators of fibrosis resulting in accumulation of excessive interstitial collagen and extracellular matrix, but their origins are not well defined. We aimed to elucidate the contribution of lung epithelium-derived fibroblasts via epithelial-mesenchymal transition (EMT) in the intratracheal bleomycin model. Primary type II alveolar epithelial cells were cultured from Immortomice and exposed to transforming growth factor-beta(1) and epidermal growth factor. Cell fate reporter mice that permanently mark cells of lung epithelial lineage with beta-galactosidase were developed to study EMT, and bone marrow chimeras expressing green fluorescent protein under the control of the fibroblast-associated S100A4 promoter were generated to examine bone marrow-derived fibroblasts. Mice were given intratracheal bleomycin (0.08 unit). Immunostaining was performed for S100A4, beta-galactosidase, green fluorescent protein, and alpha-smooth muscle actin. In vitro, primary type II alveolar epithelial cells undergo phenotypic changes of EMT when exposed to transforming growth factor-beta(1) and epidermal growth factor with loss of prosurfactant protein C and E-cadherin and gain of S100A4 and type I procollagen. In vivo, using cell fate reporter mice, approximately one-third of S100A4-positive fibroblasts were derived from lung epithelium 2 weeks after bleomycin administration. From bone marrow chimera studies, one-fifth of S100A4-positive fibroblasts were derived from bone marrow at this same time point. Myofibroblasts rarely derived from EMT or bone marrow progenitors. Both EMT and bone marrow progenitors contribute to S100A4-positive fibroblasts in bleomycin-induced lung fibrosis. However, neither origin is a principal contributor to lung myofibroblasts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P.

              The pleiotropic growth factor TGFβ(1) promotes many of the pathogenic mechanisms observed in lung fibrosis and airway remodeling, such as aberrant extracellular matrix deposition due to both fibroblast activation and fibroblast to myofibroblast differentiation. Serum amyloid P (SAP), a member of the pentraxin family of proteins inhibits bleomycin-induced lung fibrosis through an inhibition of pulmonary fibrocyte and pro-fibrotic alternative (M2) macrophage accumulation. It is unknown if SAP has effects downstream of TGFβ(1), a major mediator of pulmonary fibrosis. Using the lung specific TGFβ(1) transgenic mouse model, we determined that SAP inhibits all of the pathologies driven by TGFβ(1) including apoptosis, airway inflammation, pulmonary fibrocyte accumulation and collagen deposition, without affecting levels of TGFβ(1). To explore the role of monocyte derived cells in this model we used liposomal clodronate to deplete pulmonary macrophages. This led to pronounced anti-fibrotic effects that were independent of fibrocyte accumulation. Administration of SAP mirrored these effects and reduced both pulmonary M2 macrophages and increased chemokine IP10/CXCL10 expression in a SMAD 3-independent manner. Interestingly, SAP concentrations were reduced in the circulation of IPF patients and correlated with disease severity. Last, SAP directly inhibited M2 macrophage differentiation of monocytes obtained from these patients. These data suggest that the beneficial anti-fibrotic effects of SAP in TGFβ(1)-induced lung disease are via modulating monocyte responses. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                27 February 2018
                2018
                : 9
                : 138
                Affiliations
                [1] 1Department of Pediatrics, University of Florida , Gainesville, FL, United States
                [2] 2Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida , Gainesville, FL, United States
                [3] 3Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University , Clovis, CA, United States
                [4] 4FibroGen, Inc. , San Francisco, CA, United States
                [5] 5Department of Molecular Genetics and Microbiology, University of Florida , Gainesville, FL, United States
                Author notes

                Edited by: Harry Karmouty Quintana, University of Texas Health Science Center at Houston, United States

                Reviewed by: Giuseppina Milano, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland; Chuen-Mao Yang, Chang Gung University, Taiwan

                *Correspondence: Andrew J. Bryant andrew.bryant@ 123456medicine.ufl.edu

                This article was submitted to Respiratory Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00138
                5835098
                29377031
                3365038c-cf51-4e87-ad34-2c350c513c93
                Copyright © 2018 Pi, Fu, Lu, Zhou, Jorgensen, Shenoy, Lipson, Scott and Bryant.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2017
                : 12 February 2018
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 53, Pages: 13, Words: 7697
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                pulmonary hypertension,hypoxia,connective tissue growth factor (ctgf),cd11b/integrin αm (itgam),cell division control protein 42 homolog (cdc42)

                Comments

                Comment on this article