9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Genomic Characteristics and Changes of Avian Infectious Bronchitis Virus Strain CK/CH/LDL/97I after Serial Passages in Chicken Embryos

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We previously attenuated the infectious bronchitis virus (IBV) strain CK/CH/LDL/97I and found that it can convey protection against the homologous pathogenic virus.

          Objective

          To compare the full-length genome sequences of the Chinese IBV strain CK/CH/LDL/97I and its embryo-passaged, attenuated level to identify sequence substitutions responsible for the attenuation and define markers of attenuation.

          Methods

          The full-length genomes of CK/CH/LDL/97I P5 and P115 were amplified and sequenced. The sequences were assembled and compared using the MEGALIGN program (DNAStar) and a phylogenetic tree was constructed using MEGA4 software.

          Results

          The CK/CH/LDL/97I virus population contained subpopulations with a mixture of genetic mutants. Changes were observed in nsp4, nsp9, nsp11/12, nsp14, nsp15, nsp16, and ORF3a, but these did not result in amino acid substitutions or did not show functional variations. Amino acid substitutions occurred in the remaining genes between P5 and P115; most were found in the S region, and some of the nucleotide mutations resulted in amino acid substitutions. Among the 9 nsps in the ORF1 region, nsp3 contained the most nucleotide substitutions.

          Conclusions

          Sequence variations in different genes, especially the S gene and nsp3, in the genomes of CK/CH/LDL/97I viruses might contribute to differences in viral replication, pathogenicity, antigenicity, immunogenicity, and tissue tropism.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coronavirus avian infectious bronchitis virus.

            Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nidovirus transcription: how to make sense...?

              Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
                Bookmark

                Author and article information

                Journal
                Intervirology
                Intervirology
                INT
                Intervirology
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.com )
                0300-5526
                1423-0100
                December 2014
                29 August 2014
                : 57
                : 6
                : 319-330
                Affiliations
                Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
                Author notes
                *Shengwang Liu, Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001 (PR China), E-Mail swliu@ 123456hvri.ac.cn
                Article
                int-0057-0319
                10.1159/000365193
                7179551
                25195733
                3368ebcc-21a4-404e-94e3-4ac911d54a7d
                Copyright © 2014 by S. Karger AG, Basel

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 25 July 2013
                : 7 June 2014
                : 2014
                Page count
                Figures: 2, Tables: 1, References: 60, Pages: 12
                Categories
                Original Paper

                genomic characteristics,avian infectious bronchitis virus,ck/ch/ldl/97i

                Comments

                Comment on this article