15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arterial Wall Stress Controls NFAT5 Activity in Vascular Smooth Muscle Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nuclear factor of activated T‐cells 5 (NFAT5) has recently been described to control the phenotype of vascular smooth muscle cells (VSMCs). Although an increase in wall stress or stretch (eg, elicited by hypertension) is a prototypic determinant of VSMC activation, the impact of this biomechanical force on the activity of NFAT5 is unknown. This study intended to reveal the function of NFAT5 and to explore potential signal transduction pathways leading to its activation in stretch‐stimulated VSMCs.

          Methods and Results

          Human arterial VSMCs were exposed to biomechanical stretch and subjected to immunofluorescence and protein‐biochemical analyses. Stretch promoted the translocation of NFAT5 to the nucleus within 24 hours. While the protein abundance of NFAT5 was regulated through activation of c‐Jun N‐terminal kinase under these conditions, its translocation required prior activation of palmitoyltransferases. DNA microarray and ChiP analyses identified the matrix molecule tenascin‐C as a prominent transcriptional target of NFAT5 under these conditions that stimulates migration of VSMCs. Analyses of isolated mouse femoral arteries exposed to hypertensive perfusion conditions verified that NFAT5 translocation to the nucleus is followed by an increase in tenascin‐C abundance in the vessel wall.

          Conclusions

          Collectively, our data suggest that biomechanical stretch is sufficient to activate NFAT5 both in native and cultured VSMCs where it regulates the expression of tenascin‐C. This may contribute to an improved migratory activity of VSMCs and thus promote maladaptive vascular remodeling processes such as hypertension‐induced arterial stiffening.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The role of NFAT transcription factors in integrin-mediated carcinoma invasion.

          Integrins, receptors for extracellular matrix ligands, are critical regulators of the invasive phenotype. Specifically, the alpha(6)beta(4) integrin has been linked with epithelial cell motility, cellular survival and carcinoma invasion, hallmarks of metastatic tumours. Previous studies have also shown that antagonists of the NFAT (nuclear factor of activated T-cells) family of transcription factors exhibit strong anti-tumour-promoting activity. This suggests that NFAT may function in tumour metastasis. Here, we investigate the involvement of NFAT in promoting carcinoma invasion downstream of the alpha(6)beta(4) integrin. We provide evidence that both NFAT1, and the recently identified NFAT5 isoform, are expressed in invasive human ductal breast carcinomas and participate in promoting carcinoma invasion using cell lines derived from human breast and colon carcinomas. NFAT1 and NFAT5 activity correlates with the expression of the alpha(6)beta(4) integrin. In addition, the transcriptional activity of NFAT5 is induced by alpha(6)beta(4) clustering in the presence of chemo-attractants, resulting in enhanced cell migration. These observations show that NFATs are targets of alpha(6)beta(4) integrin signalling and are involved in promoting carcinoma invasion, highlighting a novel function for this family of transcription factors in human cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.

            Smooth muscle cells switch between differentiated and proliferative phenotypes in response to extracellular cues, but the transcriptional mechanisms that confer such phenotypic plasticity remain unclear. Serum response factor (SRF) activates genes involved in smooth muscle differentiation and proliferation by recruiting muscle-restricted cofactors, such as the transcriptional coactivator myocardin, and ternary complex factors (TCFs) of the ETS-domain family, respectively. Here we show that growth signals repress smooth muscle genes by triggering the displacement of myocardin from SRF by Elk-1, a TCF that acts as a myogenic repressor. The opposing influences of myocardin and Elk-1 on smooth muscle gene expression are mediated by structurally related SRF-binding motifs that compete for a common docking site on SRF. A mutant smooth muscle promoter, retaining responsiveness to myocardin and SRF but defective in TCF binding, directs ectopic transcription in the embryonic heart, demonstrating a role for TCFs in suppression of smooth muscle gene expression in vivo. We conclude that growth and developmental signals modulate smooth muscle gene expression by regulating the association of SRF with antagonistic cofactors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis.

              Remodeling of large and small arteries contributes to the development and complications of hypertension. The focus of this review is some of the mechanisms involved in the remodeling of small arteries in hypertension. In hypertension, changes in small artery structure are basically of 2 kinds: (1) inward eutrophic remodeling, in which outer and lumen diameters are decreased, media/lumen ratio is increased, and cross-sectional area of the media is unaltered; and (2) hypertrophic remodeling, in which the media thickens to encroach on the lumen, resulting in increased media cross-sectional area and media/lumen ratio. Growth, apoptosis, inflammation, and fibrosis contribute to vascular remodeling in hypertension. Apoptosis is gene-regulated cell death, with minimal membrane disruption and inflammation, that counters cell proliferation and fine-tunes developmental growth. Apoptosis has been reported in hypertension to be both increased and decreased in different tissues, including blood vessels. Inflammation, which may be low grade, probably plays an important role in triggering fibrosis in cardiovascular disease and hypertension. Vascular fibrosis entails accumulation of collagen, fibronectin, and other extracellular matrix components in the vessel wall and is an important aspect of extracellular matrix remodeling in hypertension. Associated with this, there may be increases in cell-matrix attachment sites (integrins) and changes in their topographical localization that may modulate arterial structure. Imbalance in matrix metalloproteinase/tissue inhibitors of metalloproteinases may contribute to alteration in collagen turnover and extracellular matrix remodeling. Chronic vasoconstriction may lead to embedding of the contracted vessel structure in a remodeled extracellular matrix, contributing to the inward remodeling of the blood vessel as smooth muscle cells are rearranged around a smaller lumen. The resulting remodeling of small arteries may initially be adaptive, but eventually it becomes maladaptive and compromises organ function, contributing to cardiovascular complications of hypertension.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                April 2014
                25 April 2014
                : 3
                : 2
                : e000626
                Affiliations
                [1 ]Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany (C.S., L.P., A.H.W., M., M.C., M.H., T.K.)
                Author notes
                Correspondence to: Thomas Korff, PhD, Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany. E‐mail: korff@ 123456physiologie.uni-heidelberg.de

                Scherer and Pfisterer contributed equally to this work.

                Marco Cattaruzza is deceased.

                Article
                jah3447
                10.1161/JAHA.113.000626
                4187483
                24614757
                336ac312-45eb-40f5-ab62-a243c90d6af3
                © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 09 December 2013
                : 27 December 2013
                Categories
                Original Research
                Vascular Medicine

                Cardiovascular Medicine
                hypertension,nfat5,tenascin‐c,vascular smooth muscle cells,wall stress
                Cardiovascular Medicine
                hypertension, nfat5, tenascin‐c, vascular smooth muscle cells, wall stress

                Comments

                Comment on this article