44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction

      research-article
      1 , , 2 , 3
      Nature Communications
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mass extinction events are short-lived and characterized by catastrophic biosphere collapse and subsequent reorganization. Their abrupt nature necessitates a similarly short-lived trigger, and large igneous province magmatism is often implicated. However, large igneous provinces are long-lived compared to mass extinctions. Therefore, if large igneous provinces are an effective trigger, a subinterval of magmatism must be responsible for driving deleterious environmental effects. The onset of Earth’s most severe extinction, the end-Permian, coincided with an abrupt change in the emplacement style of the contemporaneous Siberian Traps large igneous province, from dominantly flood lavas to sill intrusions. Here we identify the initial emplacement pulse of laterally extensive sills as the critical deadly interval. Heat from these sills exposed untapped volatile-fertile sediments to contact metamorphism, likely liberating the massive greenhouse gas volumes needed to drive extinction. These observations suggest that large igneous provinces characterized by sill complexes are more likely to trigger catastrophic global environmental change than their flood basalt- and/or dike-dominated counterparts.

          Author Summary

          Although the mass end-Permian extinction is linked to large igneous provinces, its trigger remains unclear. Here, the authors propose that the abrupt change from flood lavas to sills resulted in the heating of sediments and led to the release of large-scale greenhouse gases to drive the end-Permian extinction.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Lethally hot temperatures during the Early Triassic greenhouse.

          Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-precision timeline for Earth's most severe extinction.

            The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large perturbations of the carbon cycle during recovery from the end-permian extinction.

              High-resolution carbon isotope measurements of multiple stratigraphic sections in south China demonstrate that the pronounced carbon isotopic excursion at the Permian-Triassic boundary was not an isolated event but the first in a series of large fluctuations that continued throughout the Early Triassic before ending abruptly early in the Middle Triassic. The unusual behavior of the carbon cycle coincides with the delayed recovery from end-Permian extinction recorded by fossils, suggesting a direct relationship between Earth system function and biological rediversification in the aftermath of Earth's most devastating mass extinction.
                Bookmark

                Author and article information

                Contributors
                sburgess@usgs.gov
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                31 July 2017
                31 July 2017
                2017
                : 8
                : 164
                Affiliations
                [1 ]U.S. Geological Survey, Volcano Science Center, 345 Middlefield Road, Mail Stop 910, Menlo Park, CA 94025 USA
                [2 ]ISNI 0000 0001 2189 1568, GRID grid.264484.8, , Department of Earth Sciences Syracuse University, ; 204 Heroy Geology Laboratory, Syracuse, NY 13244 USA
                [3 ]ISNI 0000 0001 2341 2786, GRID grid.116068.8, , Earth, Atmospheric, and Planetary Sciences Department Massachusetts Institute of Technology, ; 77 Massachusetts Avenue, Cambridge, MA 02139 USA
                Article
                83
                10.1038/s41467-017-00083-9
                5537227
                28761160
                3372e5c0-7917-4120-9210-362a3886f5df
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 October 2016
                : 31 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article