Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Successful integration of signals from the various sensory systems is crucial for normal sensory-perceptual functioning, allowing for the perception of coherent objects rather than a disconnected cluster of fragmented features. Several prominent theories of autism suggest that automatic integration is impaired in this population, but there have been few empirical tests of this thesis. A standard electrophysiological metric of multisensory integration (MSI) was used to test the integrity of auditory-somatosensory integration in children with autism (N=17, aged 6-16 years), compared to age- and IQ-matched typically developing (TD) children. High-density electrophysiology was recorded while participants were presented with either auditory or somatosensory stimuli alone (unisensory conditions), or as a combined auditory-somatosensory stimulus (multisensory condition), in randomized order. Participants watched a silent movie during testing, ignoring concurrent stimulation. Significant differences between neural responses to the multisensory auditory-somatosensory stimulus and the unisensory stimuli (the sum of the responses to the auditory and somatosensory stimuli when presented alone) served as the dependent measure. The data revealed group differences in the integration of auditory and somatosensory information that appeared at around 175 ms, and were characterized by the presence of MSI for the TD but not the autism spectrum disorder (ASD) children. Overall, MSI was less extensive in the ASD group. These findings are discussed within the framework of current knowledge of MSI in typical development as well as in relation to theories of ASD.

          Related collections

          Most cited references 74

          • Record: found
          • Abstract: not found
          • Article: not found

          Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity.

            The brain activation of a group of high-functioning autistic participants was measured using functional MRI during sentence comprehension and the results compared with those of a Verbal IQ-matched control group. The groups differed in the distribution of activation in two of the key language areas. The autism group produced reliably more activation than the control group in Wernicke's (left laterosuperior temporal) area and reliably less activation than the control group in Broca's (left inferior frontal gyrus) area. Furthermore, the functional connectivity, i.e. the degree of synchronization or correlation of the time series of the activation, between the various participating cortical areas was consistently lower for the autistic than the control participants. These findings suggest that the neural basis of disordered language in autism entails a lower degree of information integration and synchronization across the large-scale cortical network for language processing. The article presents a theoretical account of the findings, related to neurobiological foundations of underconnectivity in autism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multisensory integration: current issues from the perspective of the single neuron.

              For thousands of years science philosophers have been impressed by how effectively the senses work together to enhance the salience of biologically meaningful events. However, they really had no idea how this was accomplished. Recent insights into the underlying physiological mechanisms reveal that, in at least one circuit, this ability depends on an intimate dialogue among neurons at multiple levels of the neuraxis; this dialogue cannot take place until long after birth and might require a specific kind of experience. Understanding the acquisition and usage of multisensory integration in the midbrain and cerebral cortex of mammals has been aided by a multiplicity of approaches. Here we examine some of the fundamental advances that have been made and some of the challenging questions that remain.
                Bookmark

                Author and article information

                Journal
                Autism Research
                Autism Res
                Wiley
                19393792
                October 2010
                October 2010
                August 19 2010
                : 3
                : 5
                : 253-267
                Article
                10.1002/aur.152
                20730775
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Product
                Self URI (article page): http://doi.wiley.com/10.1002/aur.152

                Comments

                Comment on this article