56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Use of Carbohydrates During Exercise as an Ergogenic Aid

      ,
      Sports Medicine
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2-3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h⁻¹ (~1.0-1.1 g·min⁻¹) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h⁻¹ (~1.5-1.8 g·min⁻¹) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min⁻¹ glucose plus 0.6 g·min⁻¹ of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45-60 min), more intense (>75 % peak oxygen uptake; VO(₂peak)) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous system. Carbohydrate ingestion during exercise also benefits athletes involved in intermittent/team sports. These athletes are advised to follow similar carbohydrate feeding strategies as the endurance athletes, but need to modify exogenous carbohydrate intake based upon the intensity and duration of the game and the available endogenous carbohydrate stores. Ample carbohydrate intake is also important for those athletes who need to compete twice within 24 h, when rapid repletion of endogenous glycogen stores is required to prevent a decline in performance. To support rapid post-exercise glycogen repletion, large amounts of exogenous carbohydrate (1.2 g·kg⁻¹·h⁻¹) should be provided during the acute recovery phase from exhaustive exercise. For those athletes with a lower gastrointestinal threshold for carbohydrate ingestion immediately post-exercise, and/or to support muscle re-conditioning, co-ingesting a small amount of protein (0.2-0.4 g·kg⁻¹·h⁻¹) with less carbohydrate (0.8 g·kg⁻¹·h⁻¹) may provide a feasible option to achieve similar muscle glycogen repletion rates.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          American College of Sports Medicine position stand. Exercise and fluid replacement.

          This Position Stand provides guidance on fluid replacement to sustain appropriate hydration of individuals performing physical activity. The goal of prehydrating is to start the activity euhydrated and with normal plasma electrolyte levels. Prehydrating with beverages, in addition to normal meals and fluid intake, should be initiated when needed at least several hours before the activity to enable fluid absorption and allow urine output to return to normal levels. The goal of drinking during exercise is to prevent excessive (>2% body weight loss from water deficit) dehydration and excessive changes in electrolyte balance to avert compromised performance. Because there is considerable variability in sweating rates and sweat electrolyte content between individuals, customized fluid replacement programs are recommended. Individual sweat rates can be estimated by measuring body weight before and after exercise. During exercise, consuming beverages containing electrolytes and carbohydrates can provide benefits over water alone under certain circumstances. After exercise, the goal is to replace any fluid electrolyte deficit. The speed with which rehydration is needed and the magnitude of fluid electrolyte deficits will determine if an aggressive replacement program is merited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            American College of Sports Medicine position stand. Nutrition and athletic performance.

            It is the position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine that physical activity, athletic performance, and recovery from exercise are enhanced by optimal nutrition. These organizations recommend appropriate selection of foods and fluids, timing of intake, and supplement choices for optimal health and exercise performance. This updated position paper couples a rigorous, systematic, evidence-based analysis of nutrition and performance-specific literature with current scientific data related to energy needs, assessment of body composition, strategies for weight change, nutrient and fluid needs, special nutrient needs during training and competition, the use of supplements and ergogenic aids, nutrition recommendations for vegetarian athletes, and the roles and responsibilities of the sports dietitian. Energy and macronutrient needs, especially carbohydrate and protein, must be met during times of high physical activity to maintain body weight, replenish glycogen stores, and provide adequate protein to build and repair tissue. Fat intake should be sufficient to provide the essential fatty acids and fat-soluble vitamins and to contribute energy for weight maintenance. Although exercise performance can be affected by body weight and composition, these physical measures should not be a criterion for sports performance and daily weigh-ins are discouraged. Adequate food and fluid should be consumed before, during, and after exercise to help maintain blood glucose concentration during exercise, maximize exercise performance, and improve recovery time. Athletes should be well hydrated before exercise and drink enough fluid during and after exercise to balance fluid losses. Sports beverages containing carbohydrates and electrolytes may be consumed before, during, and after exercise to help maintain blood glucose concentration, provide fuel for muscles, and decrease risk of dehydration and hyponatremia. Vitamin and mineral supplements are not needed if adequate energy to maintain body weight is consumed from a variety of foods. However, athletes who restrict energy intake, use severe weight-loss practices, eliminate one or more food groups from their diet, or consume unbalanced diets with low micronutrient density may require supplements. Because regulations specific to nutritional ergogenic aids are poorly enforced, they should be used with caution and only after careful product evaluation for safety, efficacy, potency, and legality. A qualified sports dietitian and, in particular, the Board Certified Specialist in Sports Dietetics in the United States, should provide individualized nutrition direction and advice after a comprehensive nutrition assessment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity.

              Exercise studies have suggested that the presence of carbohydrate in the human mouth activates regions of the brain that can enhance exercise performance but direct evidence of such a mechanism is limited. The first aim of the present study was to observe how rinsing the mouth with solutions containing glucose and maltodextrin, disguised with artificial sweetener, would affect exercise performance. The second aim was to use functional magnetic resonance imaging (fMRI) to identify the brain regions activated by these substances. In Study 1A, eight endurance-trained cyclists (VO2max 60.8 +/- 4.1 ml kg(-1) min(-1)) completed a cycle time trial (total work = 914 +/- 29 kJ) significantly faster when rinsing their mouths with a 6.4% glucose solution compared with a placebo containing saccharin (60.4 +/- 3.7 and 61.6 +/- 3.8 min, respectively, P = 0.007). The corresponding fMRI study (Study 1B) revealed that oral exposure to glucose activated reward-related brain regions, including the anterior cingulate cortex and striatum, which were unresponsive to saccharin. In Study 2A, eight endurance-trained cyclists (VO2max 57.8 +/- 3.2 ml kg(-1) min(-1)) tested the effect of rinsing with a 6.4% maltodextrin solution on exercise performance, showing it to significantly reduce the time to complete the cycle time trial (total work = 837 +/- 68 kJ) compared to an artificially sweetened placebo (62.6 +/- 4.7 and 64.6 +/- 4.9 min, respectively, P = 0.012). The second neuroimaging study (Study 2B) compared the cortical response to oral maltodextrin and glucose, revealing a similar pattern of brain activation in response to the two carbohydrate solutions, including areas of the insula/frontal operculum, orbitofrontal cortex and striatum. The results suggest that the improvement in exercise performance that is observed when carbohydrate is present in the mouth may be due to the activation of brain regions believed to be involved in reward and motor control. The findings also suggest that there may be a class of so far unidentified oral receptors that respond to carbohydrate independently of those for sweetness.
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Science and Business Media LLC
                0112-1642
                1179-2035
                November 2013
                July 12 2013
                November 2013
                : 43
                : 11
                : 1139-1155
                Article
                10.1007/s40279-013-0079-0
                23846824
                33803d05-552d-4112-9ed1-8c967a29dbba
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article