2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to develop and evaluate a deep learning model to detect bone marrow edema (BME) in sacroiliac joints and predict the MRI Assessment of SpondyloArthritis International Society (ASAS) definition of active sacroiliitis in patients with chronic inflammatory back pain.

          Related collections

          Author and article information

          Journal
          Diagn Interv Imaging
          Diagnostic and interventional imaging
          Elsevier BV
          2211-5684
          2211-5684
          2023
          : 104
          : 7-8
          Affiliations
          [1 ] Sorbonne Médecine Université, 75013 Paris, France; Department of Radiology, Hôpital Cochin, APHP, 75014 Paris, France. Electronic address: adrien.bordner@aphp.fr.
          [2 ] CentraleSupélec, Université Paris-Saclay, Inria, 91190 Gif-sur-Yvette, France.
          [3 ] Department of Rheumatology, Reina Sofia University Hospital, IMIBIC, University of Cordoba, 14004 Cordoba, Spain.
          [4 ] Department of Radiology, Hôpital Cochin, APHP, 75014 Paris, France; Université Paris Cité, 75006 Paris, France.
          [5 ] Department of Rheumatology, Hôpital Cochin, APHP, 75014 Paris, France; INSERM U1153, Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, 75004 Paris, France.
          [6 ] Université Paris Cité, 75006 Paris, France; Department of Rheumatology, Hôpital Cochin, APHP, 75014 Paris, France; INSERM U1153, Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, 75004 Paris, France.
          [7 ] Department of Radiology, Hôpital Cochin, APHP, 75014 Paris, France; Université Paris Cité, 75006 Paris, France; INSERM U1153, Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, 75004 Paris, France.
          Article
          S2211-5684(23)00056-6
          10.1016/j.diii.2023.03.008
          37012131
          33870bf3-53c7-4036-8c5f-a16a37cbc084
          History

          Sacroiliac joint,Artificial intelligence,Deep-learning,Magnetic resonance imaging,Spondyloarthritis

          Comments

          Comment on this article