39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GIT2 Acts as a Potential Keystone Protein in Functional Hypothalamic Networks Associated with Age-Related Phenotypic Changes in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the normal aging process.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular networks as sensors and drivers of common human diseases.

          The molecular biology revolution led to an intense focus on the study of interactions between DNA, RNA and protein biosynthesis in order to develop a more comprehensive understanding of the cell. One consequence of this focus was a reduced attention to whole-system physiology, making it difficult to link molecular biology to clinical medicine. Equipped with the tools emerging from the genomics revolution, we are now in a position to link molecular states to physiological ones through the reverse engineering of molecular networks that sense DNA and environmental perturbations and, as a result, drive variations in physiological states associated with disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women.

            The problems of adherence to energy restriction in humans are well known. To compare the feasibility and effectiveness of intermittent continuous energy (IER) with continuous energy restriction (CER) for weight loss, insulin sensitivity and other metabolic disease risk markers. Randomized comparison of a 25% energy restriction as IER (∼ 2710 kJ/day for 2 days/week) or CER (∼ 6276 kJ/day for 7 days/week) in 107 overweight or obese (mean (± s.d.) body mass index 30.6 (± 5.1) kg m(-2)) premenopausal women observed over a period of 6 months. Weight, anthropometry, biomarkers for breast cancer, diabetes, cardiovascular disease and dementia risk; insulin resistance (HOMA), oxidative stress markers, leptin, adiponectin, insulin-like growth factor (IGF)-1 and IGF binding proteins 1 and 2, androgens, prolactin, inflammatory markers (high sensitivity C-reactive protein and sialic acid), lipids, blood pressure and brain-derived neurotrophic factor were assessed at baseline and after 1, 3 and 6 months. Last observation carried forward analysis showed that IER and CER are equally effective for weight loss: mean (95% confidence interval ) weight change for IER was -6.4 (-7.9 to -4.8) kg vs -5.6 (-6.9 to -4.4) kg for CER (P-value for difference between groups = 0.4). Both groups experienced comparable reductions in leptin, free androgen index, high-sensitivity C-reactive protein, total and LDL cholesterol, triglycerides, blood pressure and increases in sex hormone binding globulin, IGF binding proteins 1 and 2. Reductions in fasting insulin and insulin resistance were modest in both groups, but greater with IER than with CER; difference between groups for fasting insulin was -1.2 (-1.4 to -1.0) μU ml(-1) and for insulin resistance was -1.2 (-1.5 to -1.0) μU mmol(-1) l(-1) (both P = 0.04). IER is as effective as CER with regard to weight loss, insulin sensitivity and other health biomarkers, and may be offered as an alternative equivalent to CER for weight loss and reducing disease risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signals from the reproductive system regulate the lifespan of C. elegans.

              Understanding how the ageing process is regulated is a fascinating and fundamental problem in biology. Here we demonstrate that signals from the reproductive system influence the lifespan of the nematode Caenorhabditis elegans. If the cells that give rise to the germ line are killed with a laser microbeam, the lifespan of the animal is extended. Our findings suggest that germline signals act by modulating the activity of an insulin/IGF-1 (insulin-like growth factor) pathway that is known to regulate the ageing of this organism. Mutants with reduced activity of the insulin/IGF-1-receptor homologue DAF-2 have been shown to live twice as long as normal, and their longevity requires the activity of DAF- 16, a member of the forkhead/winged-helix family of transcriptional regulators. We find that, in order for germline ablation to extend lifespan, DAF-16 is required, as well as a putative nuclear hormone receptor, DAF-12. In addition, our findings suggest that signals from the somatic gonad also influence ageing, and that this effect requires DAF-2 activity. Together, our findings imply that the C. elegans insulin/IGF-1 system integrates multiple signals to define the animal's rate of ageing. This study demonstrates an inherent relationship between the reproductive state of this animal and its lifespan, and may have implications for the co-evolution of reproductive capability and longevity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                14 May 2012
                : 7
                : 5
                : e36975
                Affiliations
                [1 ]Receptor Pharmacology Unit, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland, United States of America
                [2 ]Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland, United States of America
                [3 ]Dodson Interdisciplinary Immunotherapy Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
                University of Wuerzburg, Germany
                Author notes

                Conceived and designed the experiments: SM BM. Performed the experiments: WC BM MCC SSP LW CMD RB SM. Analyzed the data: SM WC BM. Contributed reagents/materials/analysis tools: SM. Wrote the paper: SM BM WC.

                Article
                PONE-D-11-23420
                10.1371/journal.pone.0036975
                3351446
                22606319
                338deb79-b3dd-47bd-8996-d97aead63a42
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 22 November 2011
                : 10 April 2012
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Central Nervous System
                Physiological Processes
                Aging
                Biochemistry
                Proteins
                Transmembrane Proteins
                Model Organisms
                Animal Models
                Rat
                Molecular Cell Biology
                Proteomics
                Systems Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article