1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aryl Urea Based Scaffolds for Multitarget Drug Discovery in Anticancer Immunotherapies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twenty-one styryl and phenethyl aryl ureas have been synthetized and biologically evaluated as multitarget inhibitors of Vascular endothelial growth factor receptor-2 VEGFR-2 and programmed death-ligand-1 (PD-L1) proteins in order to overcome resistance phenomena offered by cancer. The antiproliferative activity of these molecules on several tumor cell lines (HT-29, MCF-7, HeLa and A549), on the endothelial cell line human microvascular endothelial cells (HMEC)-1 and on the non-tumor cell line human embryonic kidney cells (HEK)-293 has been determined. Some derivatives were evaluated for their antiangiogenic properties such as their ability to inhibit microvessel formation using HMEC-1 or their effect on VEGFR-2 in both cancer and endothelial cell lines. In addition, the immunomodulator action of a number of selected compounds was also studied on PD-L1 and c-Myc proteins. Compounds 16 and 23 ( Z) and ( E)-styryl p-bromophenyl urea, respectively, showed better results than sorafenib in down-regulation of VEGFR-2 and also improved the effect of the anti-PD-L1 compound BMS-8 on both targets, PD-L1 and c-Myc proteins.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.

            We describe the testing and release of AutoDock4 and the accompanying graphical user interface AutoDockTools. AutoDock4 incorporates limited flexibility in the receptor. Several tests are reported here, including a redocking experiment with 188 diverse ligand-protein complexes and a cross-docking experiment using flexible sidechains in 87 HIV protease complexes. We also report its utility in analysis of covalently bound ligands, using both a grid-based docking method and a modification of the flexible sidechain technique. (c) 2009 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Hallmarks of Cancer

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                06 April 2021
                April 2021
                : 14
                : 4
                : 337
                Affiliations
                Departament de Química Inorgànica i Orgànica, Universitat Jaume I, E-12071 Castellón, Spain; beltranc@ 123456uji.es (C.M.-B.); ragil@ 123456uji.es (R.G.-E.); gribelle@ 123456uji.es (G.H.-R.); ragut@ 123456uji.es (R.A.); al107334@ 123456alumail.uji.es (P.M.-M.); mcarda@ 123456uji.es (M.C.)
                Author notes
                [* ]Correspondence: efalomir@ 123456uji.es
                Author information
                https://orcid.org/0000-0003-0329-6313
                Article
                pharmaceuticals-14-00337
                10.3390/ph14040337
                8067507
                338e6d89-57e6-4363-bb50-913af0bf6126
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 10 February 2021
                : 02 April 2021
                Categories
                Article

                styryl aryl urea,phenethyl aryl urea,pd-l1,vegfr-2,c-myc,multitarget inhibitors,immunomodulation,angiogenesis

                Comments

                Comment on this article