11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An active alternative splicing isoform of human mitochondrial 8-oxoguanine DNA glycosylase (OGG1)

      review-article
      Genes and Environment
      BioMed Central
      Human 8-oxoguanine DNA glycosylase, OGG1, Mitochondrial OGG1, OGG1-1a, OGG1-1b, OGG1-2a

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eight alternatively spliced isoforms of human 8-oxoguanine DNA glycosylase ( OGG1) ( OGG1-1a, −1b, −1c, −2a, −2b, −2c, −2d and −2e) are registered at the National Center for Biotechnology Information (NCBI). OGG1-1a is present in the nucleus, whereas the other seven isoforms are present in the mitochondria. Recombinant OGG1-1a has been purified and enzyme kinetics determined. OGG1(s) in mitochondria have not been fully characterized biochemically until recently. The major mitochondrial OGG1 isoform, OGG1-2a (also named β-OGG1), has also been expressed and purified; however, its activity is unresolved. Recently, we purified recombinant mitochondrial OGG1-1b and found that it was an active OGG1 enzyme. We reported its enzyme kinetics and compared the results with those of OGG1-1a. The reaction rate constant of OGG1-1b 8-oxoG glycosylase activity ( k g) was 8-oxoG:C > > 8-oxoG:T > > 8-oxoG:G > 8-oxoG:A and was similar to that of OGG1-1a under single-turnover conditions ([ E] > [ S]). Both OGG1-1b and OGG1-1a showed high specificity towards 8-oxoG:C. The reaction rate constant of OGG1-1b N-glycosylase/DNA lyase activity ( k gl) was 8-oxoG:C > 8-oxoG:T ≃ 8-oxoG:G > > 8-oxoG:A and that of OGG1-1a was 8-oxoG:C > 8-oxoG:T, 8-oxoG:G and 8-oxoG:A. The k gl of OGG1-1b and OGG1-1a is one order of magnitude lower than the corresponding k g value. OGG1-1b showed an especially low k gl towards 8-oxoG:A. Comparable expression of OGG1-1a and OGG1-1b was detected by RT-PCR in normal human lung tissue and lung cell lines. These results suggest that OGG1-1b is associated with 8-oxoG cleavage in human lung mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1-1a. Currently, the other five mitochondrial OGG1 isoforms have not been isolated. I summarize information on OGG1 isoform mRNAs, coding DNA sequences and amino acid sequences that are archived by the National Center for Biotechnology Information.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs.

          We identified seven alternatively spliced forms of human 8-oxoguanine DNA glycosylase (OGG1) mRNAs, classified into two types based on their last exons (type 1 with exon 7: 1a and 1b; type 2 with exon 8: 2a to 2e). Types 1a and 2a mRNAs are major in human tissues. Seven mRNAs are expected to encode different polypeptides (OGG1-1a to 2e) that share their N terminus with the common mitochondrial targeting signal, and each possesses a unique C terminus. A 36-kDa polypeptide, corresponding to OGG1-1a recognized only by antibodies against the region containing helix-hairpin-helix-PVD motif, was copurified from the nuclear extract with an activity introducing a nick into DNA containing 8-oxoguanine. A 40-kDa polypeptide corresponding to a processed form of OGG1-2a was detected in their mitochondria using antibodies against its C terminus. Electron microscopic immunocytochemistry and subfractionation of the mitochondria revealed that OGG1-2a locates on the inner membrane of mitochondria. Deletion mutant analyses revealed that the unique C terminus of OGG1-2a and its mitochondrial targeting signal are essential for mitochondrial localization and that nuclear localization of OGG1-1a depends on the NLS at its C terminus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue.

            8-Hydroxyguanine (8-OH-G) is one of the major DNA oxidation products implicated in mutagenesis induced by oxygen radical-forming agents, including ionizing radiation. It is also believed to be involved in spontaneous mutation induced by metabolically produced oxygen radicals. A mammalian homologue of 8-OH-G glycosylase/apurinic, apyrimidinic lyase (mutM homologue, MMH) has been identified in the EST database (for expressed sequence tags) through a homology search with yeast OGG1 protein. The human MMH protein (hMMH), 34% identical to the yeast OGG1 protein, is a member of the DNA repair protein superfamily. The hMMH gene was composed of seven exons, with the alternate last exon, exon 8, producing three major alternative splicing isoforms, because splicing of the sixth intron was optional. The hMMH protein expressed in Escherichia coli revealed the glycosylase activity and apurinic, apyrimidinic lyase activity on duplex DNA containing 8-OH-G. The hMMH protein can rescue a spontaneous mutator strain of E. coli lacking mutM and mutY. By the introduction of recombinant hMMH, the rate of mutation, the formation of rifampicin-resistant revertants, was reduced by 4-7 fold. Genomic structure analysis showed that 3' exons of the hMMH gene are transcribed on the antisense strand of the calcium-dependent calmodulin kinase 1 gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase.

              The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7, 8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen.
                Bookmark

                Author and article information

                Contributors
                chiefurihata@gmail.com
                Journal
                Genes Environ
                Genes Environ
                Genes and Environment
                BioMed Central (London )
                1880-7046
                1880-7062
                1 October 2015
                1 October 2015
                2015
                : 37
                : 21
                Affiliations
                [ ]School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 Japan
                [ ]Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Setagayaku, Tokyo 158-8501 Japan
                Article
                21
                10.1186/s41021-015-0021-9
                4917946
                27350816
                339a5023-5192-4690-a434-c5a6414eb805
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 April 2015
                : 12 August 2015
                Funding
                Funded by: ᅟ
                Award ID: ᅟ
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                human 8-oxoguanine dna glycosylase,ogg1,mitochondrial ogg1,ogg1-1a,ogg1-1b,ogg1-2a

                Comments

                Comment on this article