Collectively, reservoirs created by dams are thought to be an important source of greenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, and manage these emissions have been limited by data availability and inconsistencies in methodological approach. Here, we synthesize reservoir CH 4 , CO 2 , and N 2 O emission data with three main objectives: (1) to generate a global estimate of GHG emissions from reservoirs, (2) to identify the best predictors of these emissions, and (3) to consider the effect of methodology on emission estimates. We estimate that GHG emissions from reservoir water surfaces account for 0.8 (0.5–1.2) Pg CO 2 equivalents per year, with the majority of this forcing due to CH 4 . We then discuss the potential for several alternative pathways such as dam degassing and downstream emissions to contribute significantly to overall emissions. Although prior studies have linked reservoir GHG emissions to reservoir age and latitude, we find that factors related to reservoir productivity are better predictors of emission.