19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PGE2 EP1 receptor inhibits vasopressin-dependent water reabsorption and sodium transport in mouse collecting duct

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PGE2 regulates glomerular hemodynamics, renin secretion, and tubular transport. This study examined the contribution of PGE2 EP1 receptors to sodium and water homeostasis. Male EP1-/- mice were bred with hypertensive TTRhRen mice (Htn) to evaluate blood pressure and kidney function at 8 weeks of age in four groups: wildtype (WT), EP1-/-, Htn, HtnEP1-/-. Blood pressure and water balance were unaffected by EP1 deletion. COX1 and mPGE2 synthase were increased and COX2 was decreased in mice lacking EP1, with increases in EP3 and reductions in EP2 and EP4 mRNA throughout the nephron. Microdissected proximal tubule sglt1, NHE3, and AQP1 were increased in HtnEP1-/-, but sglt2 was increased in EP1-/- mice. Thick ascending limb NKCC2 was reduced in the cortex but increased in the medulla. Inner medullary collecting duct (IMCD) AQP1 and ENaC were increased, but AVP V2 receptors and urea transporter-1 were reduced in all mice compared to WT. In WT and Htn mice, PGE2 inhibited AVP-water transport and increased calcium in the IMCD, and inhibited sodium transport in cortical collecting ducts, but not in EP1-/- or HtnEP1-/- mice. Amiloride (ENaC) and hydrochlorothiazide (pendrin inhibitor) equally attenuated the effect of PGE2 on sodium transport. Taken together, the data suggest that EP1 regulates renal aquaporins and sodium transporters, attenuates AVP-water transport and inhibits sodium transport in the mouse collecting duct, which is mediated by both ENaC and pendrin-dependent pathways.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Aquaporins in the kidney: from molecules to medicine.

          The discovery of aquaporin-1 (AQP1) answered the long-standing biophysical question of how water specifically crosses biological membranes. In the kidney, at least seven aquaporins are expressed at distinct sites. AQP1 is extremely abundant in the proximal tubule and descending thin limb and is essential for urinary concentration. AQP2 is exclusively expressed in the principal cells of the connecting tubule and collecting duct and is the predominant vasopressin-regulated water channel. AQP3 and AQP4 are both present in the basolateral plasma membrane of collecting duct principal cells and represent exit pathways for water reabsorbed apically via AQP2. Studies in patients and transgenic mice have demonstrated that both AQP2 and AQP3 are essential for urinary concentration. Three additional aquaporins are present in the kidney. AQP6 is present in intracellular vesicles in collecting duct intercalated cells, and AQP8 is present intracellularly at low abundance in proximal tubules and collecting duct principal cells, but the physiological function of these two channels remains undefined. AQP7 is abundant in the brush border of proximal tubule cells and is likely to be involved in proximal tubule water reabsorption. Body water balance is tightly regulated by vasopressin, and multiple studies now have underscored the essential roles of AQP2 in this. Vasopressin regulates acutely the water permeability of the kidney collecting duct by trafficking of AQP2 from intracellular vesicles to the apical plasma membrane. The long-term adaptational changes in body water balance are controlled in part by regulated changes in AQP2 and AQP3 expression levels. Lack of functional AQP2 is seen in primary forms of diabetes insipidus, and reduced expression and targeting are seen in several diseases associated with urinary concentrating defects such as acquired nephrogenic diabetes insipidus, postobstructive polyuria, as well as acute and chronic renal failure. In contrast, in conditions with water retention such as severe congestive heart failure, pregnancy, and syndrome of inappropriate antidiuretic hormone secretion, both AQP2 expression levels and apical plasma membrane targetting are increased, suggesting a role for AQP2 in the development of water retention. Continued analysis of the aquaporins is providing detailed molecular insight into the fundamental physiology and pathophysiology of water balance and water balance disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vasopressin: a novel target for the prevention and retardation of kidney disease?

            After several decades during which little attention was paid to vasopressin and/or urine concentration in clinical practice, interest in vasopressin has renewed with the availability of new, potent, orally active vasopressin-receptor antagonists--the vaptans--and with the results of epidemiological studies evaluating copeptin (a surrogate marker of vasopressin) in large population-based cohorts. Several experimental studies in rats and mice had previously shown that vasopressin, acting via vasopressin V2 antidiuretic receptors, contributes to the progression of chronic kidney disease; in particular, to autosomal dominant polycystic kidney disease. New epidemiological studies now suggest a role for vasopressin in the pathogenesis of diabetes mellitus and metabolic disorders via activation of hepatic V1a and/or pancreatic islet V1b receptors. The first part of this Review describes the adverse effects of vasopressin, as revealed by clinical and experimental studies in kidney diseases, hypertension, diabetes and the metabolic syndrome. The second part provides insights into vasopressin physiology and pathophysiology that may be relevant to the understanding of these adverse effects and that are linked to the excretion of concentrated nitrogen wastes and associated hyperfiltration. Collectively, the studies reviewed here suggest that more attention should be given to the vasopressin-thirst-urine concentration axis in clinical investigations and in patient care. Whether selective blockade of the different vasopressin receptors may provide therapeutic benefits beyond their present indication in hyponatraemia requires new clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macula densa sensing and signaling mechanisms of renin release.

              Macula densa cells in the distal nephron, according to the classic paradigm, are salt sensors that generate paracrine chemical signals in the juxtaglomerular apparatus to control vital kidney functions, including renal blood flow, glomerular filtration, and renin release. Renin is the rate-limiting step in the activation of the renin-angiotensin system, a key modulator of body fluid homeostasis. Here, we discuss recent advances in understanding macula densa sensing and suggest these cells, in addition to salt, also sense various chemical and metabolic signals in the tubular environment that directly trigger renin release.
                Bookmark

                Author and article information

                Journal
                Laboratory Investigation
                Lab Invest
                Springer Nature
                0023-6837
                1530-0307
                December 18 2017
                December 18 2017
                :
                :
                Article
                10.1038/labinvest.2017.133
                29251736
                33acce7f-b10c-45e8-8c24-eb4d64fa91e6
                © 2017
                History

                Comments

                Comment on this article