37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein–protein interactions (PPIs) are ubiquitous in Biology, and thus offer an enormous potential for the discovery of novel therapeutics. Although protein interfaces are large and lack defining physiochemical traits, is well established that only a small portion of interface residues, the so-called hot spot residues, contribute the most to the binding energy of the protein complex. Moreover, recent successes in development of novel drugs aimed at disrupting PPIs rely on targeting such residues. Experimental methods for describing critical residues are lengthy and costly; therefore, there is a need for computational tools that can complement experimental efforts. Here, we describe a new computational approach to predict hot spot residues in protein interfaces. The method, called Presaging Critical Residues in Protein interfaces (PCRPi), depends on the integration of diverse metrics into a unique probabilistic measure by using Bayesian Networks. We have benchmarked our method using a large set of experimentally verified hot spot residues and on a blind prediction on the protein complex formed by HRAS protein and a single domain antibody. Under both scenarios, PCRPi delivered consistent and accurate predictions. Finally, PCRPi is able to handle cases where some of the input data is either missing or not reliable (e.g. evolutionary information).

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A Bayesian networks approach for predicting protein-protein interactions from genomic data.

          R. Jansen (2003)
          We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inferring cellular networks using probabilistic graphical models.

            High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The atomic structure of protein-protein recognition sites.

              The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2010
                11 December 2009
                11 December 2009
                : 38
                : 6
                : e86
                Affiliations
                Leeds Institute of Molecular Medicine, Section of Experimental Therapeutics, St James’s University Hospital, University of Leeds, Leeds, LS9 7TF, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 0 113 3438614; Fax: +44 0 113 3438601; Email: n.fernandez-fuentes@ 123456leeds.ac.uk
                Article
                gkp1158
                10.1093/nar/gkp1158
                2847225
                20008102
                33c85b4a-35db-4410-acea-a4d5bbf33c2b
                © The Author(s) 2009. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2009
                : 13 November 2009
                : 24 November 2009
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article