24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlates of species richness in the largest Neotropical amphibian radiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignficantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

          A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Size-correction and principal components for interspecific comparative studies.

            Phylogenetic methods for the analysis of species data are widely used in evolutionary studies. However, preliminary data transformations and data reduction procedures (such as a size-correction and principal components analysis, PCA) are often performed without first correcting for nonindependence among the observations for species. In the present short comment and attached R and MATLAB code, I provide an overview of statistically correct procedures for phylogenetic size-correction and PCA. I also show that ignoring phylogeny in preliminary transformations can result in significantly elevated variance and type I error in our statistical estimators, even if subsequent analysis of the transformed data is performed using phylogenetic methods. This means that ignoring phylogeny during preliminary data transformations can possibly lead to spurious results in phylogenetic statistical analyses of species data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Absolute diversification rates in angiosperm clades.

              The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time-homogeneous birth-and-death process that depends on the diversification rate (r) and the relative extinction rate (epsilon). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (e = 0.0) and under a high relative extinction rate (epsilon = 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species-rich or exceedingly species-poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (epsilon = 0.9) to 0.089 (epsilon = 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.
                Bookmark

                Author and article information

                Journal
                J Evol Biol
                jeb
                Journal of Evolutionary Biology
                Blackwell Publishing Ltd
                1010-061X
                1420-9101
                May 2011
                : 24
                : 5
                : 931-942
                Affiliations
                [* ]simpleDepartment of Integrative Ecology, Estación Biológica de Doñana-CSIC Sevilla, Spain
                []simpleDepartment of Evolution, Genomics and Systematics, Evolutionary Biology Centre (EBC), Uppsala University Uppsala, Sweden
                []simpleDepartamento de Ciencias Biológicas, Instituto de Genética, Universidad de los Andes Bogotá, Colombia
                [§ ]simpleDepartment of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales-CSIC Madrid, Spain
                Author notes
                Alejandro Gonzalez-Voyer, Department of Integrative Ecology, Estación Biológica de Doñana-CSIC, Av. Américo Vespucio s/n, 41092 Sevilla, Spain. Tel.: +34 954 466700, ext. 1749; fax: +34 954 621125; e-mail: alejandro.gonzalez@ 123456ebd.csic.es
                [1]

                These authors contributed equally.

                [2]

                Present address: Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/j.1420-9101.2011.02243.x
                3116151
                21401771
                33e051fc-6db1-48e0-8b06-4a3492b9d6c8
                Journal compilation © 2011 European Society for Evolutionary Biology

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                Categories
                Research Papers

                Evolutionary Biology
                amphibian,diversification rates,radiation,species richness,montane gradients,phylogenetic comparative method,terrarana

                Comments

                Comment on this article