7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Geographic patterns of insect diversity across China's nature reserves: The roles of niche conservatism and range overlapping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Insects are the most species‐rich clade in the world, but the broad‐scale diversity pattern and the potential drivers have not been well documented for the clade as a whole. We aimed to examine the relative roles of contemporary and historical climate, niche conservatism, range overlapping, and other environmental factors on geographic patterns of species richness and phylogenetic structure, for insects across China.

          Location

          China.

          Methods

          We collected insect data from 184 nature reserves and examined geographic patterns of species richness and mean root distance (MRD, a metric of the evolutionary development of assemblages) for different biogeographic affinities (Palearctic, Oriental, and widespread species) and for clades originated during the warm and cold geohistorical periods (“warm clades” and “cold clades,” respectively). We related richness and MRD to contemporary and historical climate, area, habitat heterogeneity, and human disturbance to evaluate their relative importance.

          Results

          Total species richness revealed a hump‐shaped latitudinal pattern, peaking between 30°~35°N. Richness patterns differed markedly among evolutionary groups: Oriental species richness decreased significantly with higher latitude but Palearctic species increased, while other groups again peaked between 30°~35°N. The range overlapping of different biogeographic groups in midlatitudes may be an important contributor to humped latitudinal richness patterns. MRD was positively related to latitude and increased more rapidly for “warm clades” than “cold clades.” Historical climate factors (especially winter coldness) were among the strongest predictors for both richness and phylogenetic patterns, for each evolutionary group, suggesting the strong influence of niche conservatism.

          Conclusions

          The hump‐shaped latitudinal pattern of insect richness in China is mainly shaped by niche conservatism and range overlapping, supplemented by habitat heterogeneity and contemporary climate. The role of niche conservatism and range overlapping may have been overlooked if only total species richness was analyzed, suggesting the importance of examining different evolutionary groups separately.

          Abstract

          The hump‐shaped latitudinal pattern of insect richness in China is mainly shaped by niche conservatism and range overlapping, supplemented by habitat heterogeneity and contemporary climate. The role of niche conservatism and range overlapping may have been overlooked if only total species richness was analyzed, suggesting the importance of examining different evolutionary groups separately.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Characteristics of maximum-value composite images from temporal AVHRR data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Community diversity: relative roles of local and regional processes.

            The species richness (diversity) of local plant and animal assemblages-biological communities-balances regional processes of species formation and geographic dispersal, which add species to communities, against processes of predation, competitive exclusion, adaptation, and stochastic variation, which may promote local extinction. During the past three decades, ecologists have sought to explain differences in local diversity by the influence of the physical environment on local interactions among species, interactions that are generally believed to limit the number of coexisting species. But diversity of the biological community often fails to converge under similar physical conditions, and local diversity bears a demonstrable dependence upon regional diversity. These observations suggest that regional and historical processes, as well as unique events and circumstances, profoundly influence local community structure. Ecologists must broaden their concepts of community processes and incorporate data from systematics, biogeography, and paleontology into analyses of ecological patterns and tests of community theory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and function of the global topsoil microbiome

              Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
                Bookmark

                Author and article information

                Contributors
                wangxiangping@bjfu.edu.cn
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                14 March 2020
                April 2020
                : 10
                : 7 ( doiID: 10.1002/ece3.v10.7 )
                : 3305-3317
                Affiliations
                [ 1 ] College of Forestry Beijing Forestry University Beijing China
                Author notes
                [*] [* ] Correspondence

                Xiangping Wang, College of Forestry, Beijing Forestry University, 35 East Qinghua Road, Haidian, Beijing 100083, China.

                Email: wangxiangping@ 123456bjfu.edu.cn

                Author information
                https://orcid.org/0000-0001-8158-560X
                Article
                ECE36097
                10.1002/ece3.6097
                7141035
                32273988
                33e20088-59cb-4fff-a31c-9dc007c2e521
                © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 October 2019
                : 21 January 2020
                : 24 January 2020
                Page count
                Figures: 3, Tables: 3, Pages: 13, Words: 10185
                Funding
                Funded by: National Key Research and Development Program of China
                Award ID: 2016YFC0502104
                Award ID: 2017YFC0503901
                Funded by: National Natural Science Foundation of China
                Award ID: 31870430
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.9 mode:remove_FC converted:08.04.2020

                Evolutionary Biology
                area,contemporary climate,habitat heterogeneity,historical processes,niche conservatism,phylogenetic structure,range overlapping

                Comments

                Comment on this article