Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From 2-D to 0-D Boron Nitride Materials, The Next Challenge

      , , *

      Materials

      MDPI

      boron nitride, 2D materials, quantum dots, fluorescence, nanocomposites

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The discovery of graphene has paved the way for intense research into 2D materials which is expected to have a tremendous impact on our knowledge of material properties in small dimensions. Among other materials, boron nitride (BN) nanomaterials have shown remarkable features with the possibility of being used in a large variety of devices. Photonics, aerospace, and medicine are just some of the possible fields where BN has been successfully employed. Poor scalability represents, however, a primary limit of boron nitride. Techniques to limit the number of defects, obtaining large area sheets and the production of significant amounts of homogenous 2D materials are still at an early stage. In most cases, the synthesis process governs defect formation. It is of utmost importance, therefore, to achieve a deep understanding of the mechanism behind the creation of these defects. We reviewed some of the most recent studies on 2D and 0D boron nitride materials. Starting with the theoretical works which describe the correlations between structure and defects, we critically described the main BN synthesis routes and the properties of the final materials. The main results are summarized to present a general outlook on the current state of the art in this field.

          Related collections

          Most cited references 103

          • Record: found
          • Abstract: found
          • Article: not found

          Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.

          The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantum emission from hexagonal boron nitride monolayers

            Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Boron nitride nanomesh.

              A highly regular mesh of hexagonal boron nitride with a 3-nanometer periodicity and a 2-nanometer hole size was formed by self-assembly on a Rh(111) single crystalline surface. Two layers of mesh cover the surface uniformly after high-temperature exposure of the clean rhodium surface to borazine (HBNH)3. The two layers are offset in such a way as to expose a minimum metal surface area. Hole formation is likely driven by the lattice mismatch of the film and the rhodium substrate. This regular nanostructure is thermally very stable and can serve as a template to organize molecules, as is exemplified by the decoration of the mesh by C60 molecules.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                26 November 2019
                December 2019
                : 12
                : 23
                Affiliations
                Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy; lstagi@ 123456uniss.it (L.S.); j.ren@ 123456studenti.uniss.it (J.R.)
                Author notes
                [* ]Correspondence: plinio@ 123456uniss.it
                Article
                materials-12-03905
                10.3390/ma12233905
                6926581
                31779207
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article