0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts.

      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stabilization of a mononuclear copper(II) complex with one MIm2Pr ligand [MIm2Pr = 3,3-bis(1-methylimidazol-2-yl)propionate] in the supercages of zeolite Y was attempted, and the resulting materials were tested for their activity in oxidation catalysis. The preparation procedure yielded initially two species (labeled 1 and 2) within the pore system of the zeolite material, which differ in molecular structure and chemical composition as determined by UV/vis, ESR, IR, and XAFS spectroscopy. In species 1, the copper was found to be five-coordinated, with one MIm2Pr ligand in a facial-type NNO coordination toward copper, the other two coordination sites being occupied by oxygen atoms from either the zeolite framework and/or a water molecule. The total charge of this complex is 1+. In species 2, the copper is surrounded by two MIm2Pr ligands, both in a facial-type coordination mode, identical to the homogeneous Cu(MIm2Pr)2 complex. This neutral species 2 is easily washed out of the zeolite, whereas the mononuclear species 1 remains inside the zeolite material upon washing. The spectroscopic characteristics and activity for 3,5-di-tert-butylcatechol and benzyl alcohol oxidation of species 1 compared closely with that of the zeolite-immobilized Cu(histidine) complexes but differed from that of the homogeneous Cu(MIm2Pr)2 complex. It was therefore found that encapsulation in zeolite offers a route to stabilize a 5-fold-coordinated copper complex with novel catalytic properties. This 1:1 Cu(MIm2Pr) complex is not formed in solution.

          Related collections

          Author and article information

          Journal
          16522101
          10.1021/ja0567992

          Comments

          Comment on this article

          scite_