8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epithelial-to-mesenchymal transition in cancer: complexity and opportunities

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: not found

          Metastasis: a question of life or death.

          The metastatic process is highly inefficient--very few of the many cells that migrate from the primary tumour successfully colonize distant sites. One proposed mechanism to explain this inefficiency is provided by the cancer stem cell model, which hypothesizes that micrometastases can only be established by tumour stem cells, which are few in number. However, recent in vitro and in vivo observations indicate that apoptosis is an important process regulating metastasis. Here we stress that the inhibition of cell death, apart from its extensively described function in primary tumour development, is a crucial characteristic of metastatic cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Models, mechanisms and clinical evidence for cancer dormancy.

            Patients with cancer can develop recurrent metastatic disease with latency periods that range from years even to decades. This pause can be explained by cancer dormancy, a stage in cancer progression in which residual disease is present but remains asymptomatic. Cancer dormancy is poorly understood, resulting in major shortcomings in our understanding of the full complexity of the disease. Here, I review experimental and clinical evidence that supports the existence of various mechanisms of cancer dormancy including angiogenic dormancy, cellular dormancy (G0-G1 arrest) and immunosurveillance. The advances in this field provide an emerging picture of how cancer dormancy can ensue and how it could be therapeutically targeted.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.

              The dissemination of tumour cells is the prerequisite of metastases and is correlated with a loss of epithelial differentiation and the acquisition of a migratory phenotype, a hallmark of malignant tumour progression. A stepwise, irreversible accumulation of genetic alterations is considered to be the responsible driving force. But strikingly, metastases of most carcinomas recapitulate the organization of their primary tumours. Although current models explain distinct and important aspects of carcinogenesis, each alone can not explain the sum of the cellular changes apparent in human cancer progression. We suggest an extended, integrated model that is consistent with all aspects of human tumour progression - the 'migrating cancer stem (MCS)-cell' concept.
                Bookmark

                Author and article information

                Journal
                101549428
                38835
                Front Med
                Front Med
                Frontiers of medicine
                2095-0217
                2095-0225
                6 September 2018
                24 July 2018
                August 2018
                01 November 2018
                : 12
                : 4
                : 361-373
                Affiliations
                [1 ]Whitehead Institute for Biomedical Research;
                [2 ]MIT Department of Biology;
                [3 ]Ludwig/MIT Center for Molecular Oncology, Cambridge, MA 02142, USA
                Author notes
                Correspondence: Yun Zhang, y.zhang@ 123456wi.mit.edu ;Robert A. Weinberg, weinberg@ 123456wi.mit.edu
                Article
                NIHMS987916
                10.1007/s11684-018-0656-6
                6186394
                30043221

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, which indicates if changes are made.

                Categories
                Article

                Comments

                Comment on this article