5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The global distribution and trajectory of tidal flats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing human populations around the global coastline have caused extensive loss, degradation and fragmentation of coastal ecosystems, threatening the delivery of important ecosystem services1. As a result, alarming losses of mangrove, coral reef, seagrass, kelp forest and coastal marsh ecosystems have occurred1-6. However, owing to the difficulty of mapping intertidal areas globally, the distribution and status of tidal flats-one of the most extensive coastal ecosystems-remain unknown7. Here we present an analysis of over 700,000 satellite images that maps the global extent of and change in tidal flats over the course of 33 years (1984-2016). We find that tidal flats, defined as sand, rock or mud flats that undergo regular tidal inundation7, occupy at least 127,921 km2 (124,286-131,821 km2, 95% confidence interval). About 70% of the global extent of tidal flats is found in three continents (Asia (44% of total), North America (15.5% of total) and South America (11% of total)), with 49.2% being concentrated in just eight countries (Indonesia, China, Australia, the United States, Canada, India, Brazil and Myanmar). For regions with sufficient data to develop a consistent multi-decadal time series-which included East Asia, the Middle East and North America-we estimate that 16.02% (15.62-16.47%, 95% confidence interval) of tidal flats were lost between 1984 and 2016. Extensive degradation from coastal development1, reduced sediment delivery from major rivers8,9, sinking of riverine deltas8,10, increased coastal erosion and sea-level rise11 signal a continuing negative trajectory for tidal flat ecosystems around the world. Our high-spatial-resolution dataset delivers global maps of tidal flats, which substantially advances our understanding of the distribution, trajectory and status of these poorly known coastal ecosystems.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery

          Hanqiu Xu (2006)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coastal eutrophication as a driver of salt marsh loss.

            Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades. Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems, can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks. Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

              Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                December 19 2018
                Article
                10.1038/s41586-018-0805-8
                30568300
                341e13c4-3f62-4dbd-a667-a818c1418c69
                © 2018

                http://www.springer.com/tdm


                Comments

                Comment on this article