9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Shift Work on Sleep, Alertness and Performance in Healthcare Workers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shift work is associated with impaired alertness and performance due to sleep loss and circadian misalignment. This study examined sleep between shift types (day, evening, night), and alertness and performance during day and night shifts in 52 intensive care workers. Sleep and wake duration between shifts were evaluated using wrist actigraphs and diaries. Subjective sleepiness (Karolinska Sleepiness Scale, KSS) and Psychomotor Vigilance Test (PVT) performance were examined during day shift, and on the first and subsequent night shifts (3 rd, 4 th or 5 th). Circadian phase was assessed using urinary 6-sulphatoxymelatonin rhythms. Sleep was most restricted between consecutive night shifts (5.74 ± 1.30 h), consecutive day shifts (5.83 ± 0.92 h) and between evening and day shifts (5.20 ± 0.90 h). KSS and PVT mean reaction times were higher at the end of the first and subsequent night shift compared to day shift, with KSS highest at the end of the first night. On nights, working during the circadian acrophase of the urinary melatonin rhythm led to poorer outcomes on the KSS and PVT. In rotating shift workers, early day shifts can be associated with similar sleep restriction to night shifts, particularly when scheduled immediately following an evening shift. Alertness and performance remain most impaired during night shifts given the lack of circadian adaptation to night work. Although healthcare workers perceive themselves to be less alert on the first night shift compared to subsequent night shifts, objective performance is equally impaired on subsequent nights.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.

          To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. A total of n = 48 healthy adults (ages 21-38) participated in the experiments. Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness were near-linearly related to the cumulative duration of wakefulness in excess of 15.84 h (s.e. 0.73 h). Since chronic restriction of sleep to 6 h or less per night produced cognitive performance deficits equivalent to up to 2 nights of total sleep deprivation, it appears that even relatively moderate sleep restriction can seriously impair waking neurobehavioral functions in healthy adults. Sleepiness ratings suggest that subjects were largely unaware of these increasing cognitive deficits, which may explain why the impact of chronic sleep restriction on waking cognitive functions is often assumed to be benign. Physiological sleep responses to chronic restriction did not mirror waking neurobehavioral responses, but cumulative wakefulness in excess of a 15.84 h predicted performance lapses across all four experimental conditions. This suggests that sleep debt is perhaps best understood as resulting in additional wakefulness that has a neurobiological "cost" which accumulates over time.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Subjective and Objective Sleepiness in the Active Individual

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.

              To determine whether a cumulative sleep debt (in a range commonly experienced) would result in cumulative changes in measures of waking neurobehavioral alertness, 16 healthy young adults had their sleep restricted 33% below habitual sleep duration, to an average 4.98 hours per night [standard deviation (SD) = 0.57] for seven consecutive nights. Subjects slept in the laboratory, and sleep and waking were monitored by staff and actigraphy. Three times each day (1000, 1600, and 2200 hours) subjects were assessed for subjective sleepiness (SSS) and mood (POMS) and were evaluated on a brief performance battery that included psychomotor vigilance (PVT), probed memory (PRM), and serial-addition testing, Once each day they completed a series of visual analog scales (VAS) and reported sleepiness and somatic and cognitive/emotional problems. Sleep restriction resulted in statistically robust cumulative effects on waking functions. SSS ratings, subscale scores for fatigue, confusion, tension, and total mood disturbance from the POMS and VAS ratings of mental exhaustion and stress were evaluated across days of restricted sleep (p = 0.009 to p = 0.0001). PVT performance parameters, including the frequency and duration of lapses, were also significantly increased by restriction (p = 0.018 to p = 0.0001). Significant time-of-day effects were evident in SSS and PVT data, but time-of-day did not interact with the effects of sleep restriction across days. The temporal profiles of cumulative changes in neurobehavioral measures of alertness as a function of sleep restriction were generally consistent. Subjective changes tended to precede performance changes by 1 day, but overall changes in both classes of measure were greatest during the first 2 days (P1, P2) and last 2 days (P6, P7) of sleep restriction. Data from subsets of subjects also showed: 1) that significant decreases in the MSLT occurred during sleep restriction, 2) that the elevated sleepiness and performance deficits continued beyond day 7 of restriction, and 3) that recovery from these deficits appeared to require two full nights of sleep. The cumulative increase in performance lapses across days of sleep restriction correlated closely with MSLT results (r = -0.95) from an earlier comparable experiment by Carskadon and Dement (1). These findings suggest that cumulative nocturnal sleep debt had a dynamic and escalating analog in cumulative daytime sleepiness and that asymptotic or steady-state sleepiness was not achieved in response to sleep restriction.
                Bookmark

                Author and article information

                Contributors
                tracey.sletten@monash.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 March 2019
                15 March 2019
                2019
                : 9
                : 4635
                Affiliations
                [1 ]Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria Australia
                [2 ]ISNI 0000 0004 1936 7857, GRID grid.1002.3, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, , Monash University, ; Clayton, Victoria Australia
                [3 ]Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria Australia
                [4 ]ISNI 0000 0004 0378 8294, GRID grid.62560.37, Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, ; Boston, MA USA
                [5 ]ISNI 000000041936754X, GRID grid.38142.3c, Division of Sleep Medicine, Harvard Medical School, ; Boston, MA USA
                Article
                40914
                10.1038/s41598-019-40914-x
                6420632
                30874565
                3429a36f-d301-416a-8001-f7dfffa39b47
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 August 2018
                : 19 February 2019
                Funding
                Funded by: Cooperative Research Centre for Alertness, Safety and Productivity, Melbourne, Victoria, Australia
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article