144
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      (R)-NODAGA-PSMA: A Versatile Precursor for Radiometal Labeling and Nuclear Imaging of PSMA-Positive Tumors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The present study aims at developing and evaluating an urea-based prostate specific membrane antigen (PSMA) inhibitor suitable for labeling with 111In for SPECT and intraoperative applications as well as 68Ga and 64Cu for PET imaging.

          Methods

          The PSMA-based inhibitor-lysine-urea-glutamate-coupled to the spacer Phe-Phe-D-Lys(suberoyl) and functionalized with the enantiomerically pure prochelator (R)-1-(1-carboxy-3-carbotertbutoxypropyl)-4,7-carbotartbutoxymethyl)-1,4,7-triazacyclononane ((R)-NODAGA(tBu) 3), to obtain (R)-NODAGA-Phe-Phe-D-Lys(suberoyl)-Lys-urea-Glu (CC34). CC34 was labeled with 111In, 68Ga and 64Cu. The radioconjugates were further evaluated in vitro and in vivo in LNCaP xenografts by biodistribution and PET studies. Biodistribution studies were also performed with 68Ga-HBED-CC-PSMA (HBED-CC: N, N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine- N, N′-diacetic acid) and 111In-PSMA-617 for comparison.

          Results

          68Ga-CC34, 64Cu-CC34, and 111In-CC34 were prepared in radiochemical purity >95%. 68/natGa-CC34, 64/natCu-CC34, 111/natIn-CC34, 68/natGa-HBED-CC-PSMA, and 111/natIn-PSMA-617 exhibited high affinity for the LNCaP cells, with K d values of 19.3±2.5 nM, 27.5±2.7 nM, 5.5±0.9 nM, 2.9±0.6 nM and 5.4±0.8 nM, respectively. They revealed comparable internalization profiles with approximately 75% of the total cell associated activity internalized after 3 h of incubation. 68Ga-CC34 showed very high stability after its administration in mice. Tumor uptake of 68Ga-CC34 (14.5±2.9% IA/g) in LNCaP xenografts at 1 h p.i. was comparable to 68Ga-HBED-CC-PSMA (15.8±1.4% IA/g) ( P = 0.67). The tumor-to-normal tissue ratios at 1 and 2 h p.i of 68Ga-CC34 were also comparable to 68Ga-HBED-CC-PSMA ( P>0.05). Tumor uptake of 111In-CC34 (28.5±2.6% IA/g) at 1 h p.i. was lower than 111In-PSMA-617 (52.1±6.5% IA/g) ( P = 0.02). The acquisition of PET-images with 64Cu-CC34 at later time points showed wash-out from the kidneys, while tumor uptake still remained relatively high. This resulted in an increased tumor-to-kidney ratio over time.

          Conclusions

          68Ga-CC34 is comparable to 68Ga-HBED-CC-PSMA in terms of tumor uptake and tumor to normal tissue ratios. 64Cu-CC34 could enable high contrast imaging of PSMA positive tissues characterized by elevated expression of PSMA or when delayed imaging is required. 64Cu-CC34 is currently being prepared for clinical translation.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Prostate-specific membrane antigen expression as a predictor of prostate cancer progression.

          Distinguishing aggressive prostate cancer from indolent disease represents an important clinical challenge, because current therapy may lead to overtreatment of men with limited disease. The prostate-specific membrane antigen (PSMA) is a membrane-bound glycoprotein that is highly restricted to the prostate. Previously, studies analyzing the expression of PSMA have found an up-regulation in correlation with prostate cancer, particularly in advanced cancer. This association is ideal for an application as a prognostic marker. In the current study, we characterized PSMA expression in a high-risk cohort and evaluated its potential use as predictive marker of prostate-specific antigen (PSA) recurrence. PSMA expression was analyzed by immunohistochemistry using tissue microarrays composed of tumor samples from 450 patients. Protein intensity was recorded using a semiautomated quantitative microscope system (ACIS II; Clarient Chromavision Medical Systems, San Juan Capistrano, CA). PSMA expression levels differed significantly (P 20%; P < .001), extraprostatic extension (P = .017), seminal vesicle invasion (P < .001), and high Gleason score (8-10, P = .006). In a multivariate model, PSMA expression and metastases to pelvic lymph nodes were significantly associated with time to PSA recurrence (HR, 1.4; 95% confidence interval, 1.1-2.8, P = .017; and hazard ratio, 5; 95% confidence interval, 2.6-9.7, P < .001, respectively). In summary, PSMA is independently associated with PSA recurrence in a high-risk cohort and thus might provide insight into the additional use of adjuvant therapy. Validation on other cohorts is required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo.

            (89)Zr (half-life, 78.41 h) is a positron-emitting radionuclide that displays excellent potential for use in the design and synthesis of radioimmunoconjugates for immunoPET. In the current study, we report the preparation of (89)Zr-desferrioxamine B (DFO)-J591, a novel (89)Zr-labeled monoclonal antibody (mAb) construct for targeted immunoPET and quantification of prostate-specific membrane antigen (PSMA) expression in vivo. The in vivo behavior of (89)Zr-chloride, (89)Zr-oxalate, and (89)Zr-DFO was studied using PET. High-level computational studies using density functional theory calculations have been used to investigate the electronic structure of (89)Zr-DFO and probe the nature of the complex in aqueous conditions. (89)Zr-DFO-J591 was characterized both in vitro and in vivo. ImmunoPET in male athymic nu/nu mice bearing subcutaneous LNCaP (PSMA-positive) or PC-3 (PSMA-negative) tumors was conducted. The change in (89)Zr-DFO-J591 tissue uptake in response to high- and low-specific-activity formulations in the 2 tumor models was measured using acute biodistribution studies and immunoPET. The basic characterization of 3 important reagents-(89)Zr-chloride, (89)Zr-oxalate, and the complex (89)Zr-DFO-demonstrated that the nature of the (89)Zr species dramatically affects the biodistribution and pharmacokinetics. Density functional theory calculations provide a rationale for the observed high in vivo stability of (89)Zr-DFO-labeled mAbs and suggest that in aqueous conditions, (89)Zr-DFO forms a thermodynamically stable, 8-coordinate complex by coordination of 2 water molecules. (89)Zr-DFO-J591 was produced in high radiochemical yield (>77%) and purity (>99%), with a specific activity of 181.7 +/- 1.1 MBq/mg (4.91 +/- 0.03 mCi/mg). In vitro assays demonstrated that (89)Zr-DFO-J591 had an initial immunoreactive fraction of 0.95 +/- 0.03 and remained active for up to 7 d. In vivo biodistribution experiments revealed high, target-specific uptake of (89)Zr-DFO-J591 in LNCaP tumors after 24, 48, 96, and 144 h (34.4 +/- 3.2 percentage injected dose per gram [%ID/g], 38.0 +/- 6.2 %ID/g, 40.4 +/- 4.8 %ID/g, and 45.8 +/- 3.2 %ID/g, respectively). ImmunoPET studies also showed that (89)Zr-DFO-J591 provides excellent image contrast, with tumor-to-muscle ratios greater than 20, for the delineation of LNCaP xenografts between 48 and 144 h after administration. These studies demonstrate that (89)Zr-DFO-labeled mAbs show exceptional promise as radiotracers for immunoPET of human cancers. (89)Zr-DFO-J591 displays high tumor-to-background tissue contrast in immunoPET and can be used to delineate and quantify PSMA-positive prostate tumors in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy.

              To determine the expression of prostate-specific membrane antigen (PSMA) before and after androgen-deprivation therapy and to compare PSMA expression with prostate-specific antigen (PSA) expression. We studied specimens from 20 patients with prostate cancer undergoing medical or surgical castration or combination androgen-deprivation therapy in whom matched pretreatment and post-treatment tissue specimens were available and 16 patients in whom only a post-treatment specimen was available. The expression of PSMA and PSA in the tissue specimens was determined by immunoperoxidase staining. The extent of staining was calculated by multiplying the percent of antigen-positive tumor cells by the staining intensity to arrive at a stain index for each biomarker. An in vitro study assessed the concentration of PSMA and PSA in extracts of LNCaP cells cultured in the presence or absence of androgen as determined by immunoassays and Western blot analysis. PSMA reactivity was found to be increased in 55% (11 of 20) of post-treatment primary tissues and 100% (4 of 4) of post-treatment metastatic specimens. In contrast, PSA expression was found to be decreased in 70% (14 of 20) of post-treatment primary and 100% (4 of 4) of post-treatment metastatic specimens. Neither type of androgen-deprivation treatment nor tissue sensitivity to androgen deprivation appeared to influence degree of biomarker expression. PSMA was found to be downregulated and PSA upregulated when LNCaP cells were cultured in the presence of testosterone or dihydrotestosterone. The enhanced expression of PSMA in tissues and LNCaP cells after androgen deprivation suggests that PSMA is upregulated in the majority of prostate carcinomas after androgen treatment. The high expression in metastatic tissues strongly suggests that PSMA may be a clinically useful target for antibody-and genetic-directed therapy of prostate cancer that recurs after androgen deprivation. The mechanism whereby androgens suppress the expression of PSMA, and the association of PSMA with the development of hormone-independent prostate cancers, will require further study.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                23 December 2015
                2015
                : 10
                : 12
                : e0145755
                Affiliations
                [1 ]German Cancer Consortium (DKTK), Heidelberg, Germany
                [2 ]Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
                [3 ]German Cancer Research Center (DKFZ), Heidelberg, Germany
                [4 ]Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS, University Bourgogne Franche-Comté, Dijon, France
                Monash University, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EG CC VG. Performed the experiments: EG CC VG. Analyzed the data: EG. Contributed reagents/materials/analysis tools: HRM PTM FD. Wrote the paper: EG HRM PTM.

                [¤]

                Current address: Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway

                Article
                PONE-D-15-46941
                10.1371/journal.pone.0145755
                4689406
                26700033
                3435b098-f8ae-40a4-b2aa-5a8bdbc46997
                © 2015 Gourni et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 27 October 2015
                : 8 December 2015
                Page count
                Figures: 6, Tables: 4, Pages: 16
                Funding
                This work was supported by the German Consortium for Translational Cancer Research (DKTK) and the Conseil Régional de Bourgogne (FABER and 3MIM programs), France.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article