7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disease prevalent in 1 in 3500 to 5000 males worldwide. As a result of mutations that interrupt the reading frame of the dystrophin gene ( DMD), DMD is characterized by a loss of dystrophin protein that leads to decreased muscle membrane integrity, which increases susceptibility to degeneration. CRISPR/Cas9 technology has garnered interest as an avenue for DMD therapy due to its potential for permanent exon skipping, which can restore the disrupted DMD reading frame in DMD and lead to dystrophin restoration. An RNA-guided DNA endonuclease system, CRISPR/Cas9 allows for the targeted editing of specific sequences in the genome. The efficacy and safety of CRISPR/Cas9 as a therapy for DMD has been evaluated by numerous studies in vitro and in vivo, with varying rates of success. Despite the potential of CRISPR/Cas9-mediated gene editing for the long-term treatment of DMD, its translation into the clinic is currently challenged by issues such as off-targeting, immune response activation, and sub-optimal in vivo delivery. Its nature as being mostly a personalized form of therapy also limits applicability to DMD patients, who exhibit a wide spectrum of mutations. This review summarizes the various CRISPR/Cas9 strategies that have been tested in vitro and in vivo for the treatment of DMD. Perspectives on the approach will be provided, and the challenges faced by CRISPR/Cas9 in its road to the clinic will be briefly discussed.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found

          CRISPR–Cas9 Structures and Mechanisms

          Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems employ the dual RNA–guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR–Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)–CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions

            Base editing is a recently developed approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide changes in the DNA of living cells without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions 1 . Here we report the development of five new C→T (or G→A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5-fold. Additionally, we engineered new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to as little as 1 to 2 nucleotides, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency, thereby doubling the number of disease-associated target Cs that can be corrected preferentially over nearby non-target Cs. Collectively, these developments substantially increase the targeting scope of base editing and establish the modular nature of base editors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence-based path to newborn screening for Duchenne muscular dystrophy.

              Creatine kinase (CK) levels are increased on dried blood spots in newborns related to the birthing process. As a marker for newborn screening, CK in Duchenne muscular dystrophy (DMD) results in false-positive testing. In this report, we introduce a 2-tier system using the dried blood spot to first assess CK with follow-up DMD gene testing. A fluorometric assay based upon the enzymatic transphosphorylation of adenosine diphosphate to adenosine triphosphate was used to measure CK activity. Preliminary studies established a population-based range of CK in newborns using 30,547 deidentified anonymous dried blood spot samples. Mutation analysis used genomic DNA extracted from the dried blood spot followed by whole genome amplification with assessment of single-/multiexon deletions/duplications in the DMD gene using multiplex ligation-dependent probe amplification. DMD gene mutations (all exonic deletions) were found in 6 of 37,649 newborn male subjects, all of whom had CK levels>2,000U/l. In 3 newborns with CK>2,000U/l in whom DMD gene abnormalities were not found, we identified limb-girdle muscular dystrophy gene mutations affecting DYSF, SGCB, and FKRP. A 2-tier system of analysis for newborn screening for DMD has been established. This path for newborn screening fits our health care system, minimizes false-positive testing, and uses predetermined levels of CK on dried blood spots to predict DMD gene mutations. Copyright © 2012 American Neurological Association.
                Bookmark

                Author and article information

                Journal
                J Pers Med
                J Pers Med
                jpm
                Journal of Personalized Medicine
                MDPI
                2075-4426
                24 November 2018
                December 2018
                : 8
                : 4
                : 38
                Affiliations
                [1 ]Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St., Edmonton, AB T6G 2H7, Canada; kenjirow@ 123456ualberta.ca (K.R.Q.L.); cyoon@ 123456ualberta.ca (C.Y.)
                [2 ]The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812-112 St., Edmonton, AB T6G 2H7, Canada
                Author notes
                [* ]Correspondence: toshifum@ 123456ualberta.ca ; Tel.: +1-780-492-1102
                [†]

                These authors contributed equally to the work.

                Author information
                https://orcid.org/0000-0002-5484-4183
                https://orcid.org/0000-0001-6672-6742
                Article
                jpm-08-00038
                10.3390/jpm8040038
                6313657
                30477208
                344c1853-583e-48be-a70c-1275565004a9
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2018
                : 20 November 2018
                Categories
                Review

                duchenne muscular dystrophy (dmd),crispr/cas9,exon skipping therapy,gene editing,human induced pluripotent stem cells (hipscs),immortalized patient muscle cells,mdx mice,humanized dystrophic mouse models,deltae50-md dog model

                Comments

                Comment on this article