2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precessing winds from the nucleus of the prototype Red Geyser?

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Super-massive black holes (SMBH) are present at the center of most galaxies, with the related mass accretion processes giving origin to outflows in Active Galactic Nuclei (AGN). It has been presumed that only intense winds from luminous AGN were able to suppress star formation until the discovery of a new class of galaxies with no recent star formation and with the nucleus in a quiescent state showing kpc scale outflows. We used SDSS MaNGA and Gemini Integral Field Spectroscopy of the prototype Red Geyser Akira and found that the orientation of the outflow changes by about 50\(^\circ\) from its nucleus to kpc scales. A possible interpretation is that the outflow is produced by a precessing accretion disk due to a misalignment between the orientation of the disk and the spin of the SMBH. The precession of the central source is also supported by a similar change in the orientation of the ionization pattern. Although similar behavior has commonly being reported for collimated relativistic jets, the precession of an AGN wide wind is reported here for the first time, implying on a larger work surface of the wind, which in turn increases the star formation suppression efficiency of the outflow.

          Related collections

          Author and article information

          Journal
          19 March 2019
          Article
          1903.08032
          344d3aa6-10ba-4efe-896f-b7b1d94930b0

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          9 pages, 5 figures, accepted for publication in MNRAS
          astro-ph.GA

          Galaxy astrophysics
          Galaxy astrophysics

          Comments

          Comment on this article